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A two-dimensional quantum Hall system without disorder for a wide class of
interactions including any two-body interaction with finite range is studied by
using the Lieb�Schultz�Mattis method [Ann. Phys. (N.Y.) 16:407 (1961)]. The
model is defined on an infinitely long strip with a fixed, large width, and the
Hilbert space is restricted to the lowest (nmax+1) Landau levels with a large
integer nmax . We prove that, for a noninteger filling & of the Landau levels,
either (i) there is a symmetry breaking at zero temperature or (ii) there is only
one infinite-volume ground state with a gapless excitation. We also prove the
following two theorems: (a) If a pure infinite-volume ground state has a non-
zero excitation gap for a noninteger filling &, then a translational symmetry
breaking occurs at zero temperature. (b) Suppose that there is no non-transla-
tionally invariant infinite-volume ground state. Then, if a pure infinite-volume
ground state has a nonzero excitation gap, the filling factor & must be equal to
a rational number. Here the ground state is allowed to have a periodic structure
which is a consequence of the translational symmetry breaking. We also discuss
the relation between our results and the quantized Hall conductance, and
phenomenologically explain why odd denominators of filling fractions & giving
the quantized Hall conductance are favored exclusively.

KEY WORDS: Quantum Hall effect; fractional quantum Hall effect; Landau
Hamiltonian; strong magnetic field; electron�electron interaction; spectral gap;
translational symmetry breaking.

1. INTRODUCTION

Since the experimental discovery of the fractional quantum Hall effect, (1, 2)

considerable theoretical efforts have been made to understand the nature of
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the ground state and of the low energy excitations above the ground state
in the two-dimensional interacting electron gas in a strong magnetic field.
Although there appeared many theories, mathematically rigorous or exact
results are still fairly rare. Actually this is one of most difficult problems in
solid state physics because the electron-electron interaction is essential to
the fractional quantization of the Hall conductance. For the history of the
quantum Hall effect, see refs. 3�5 and references therein.

In this paper we study the properties of infinite-volume ground states
and of low energy excitations in a two-dimensional interacting electron gas
in a uniform magnetic field without disorder for a wide class of electron-
electron interactions. Although the class includes any two-body interaction
with finite range, it does not include the standard Coulomb interaction
proportional to 1�r, where r is the distance between two electrons. Owing
to technical reasons, we define the model on an infinitely long strip with a
fixed width, and restrict the Hilbert space to the lowest (nmax+1) Landau
levels with a fixed integer nmax . The precise form of the Hamiltonian is
given in the next Section 2. In Section 2.5, the reason why we must fix the
width and the integer nmax , will be explained, and with the present results,
we will give a discussion about the two-dimensional infinite-volume system
with no restriction on the width and the cutoff nmax .

We apply the Lieb�Schultz�Mattis method(6) to the model. The
method was developed to construct a low energy excitation above a finite-
volume ground state for a lattice quantum spin system with a translational
invariance. Later the method was applied to quantum spin chains in rela-
tion to the Haldane gap(7, 8) and magnetization plateaus.(9) Yamanaka,
Oshikawa and Affleck(10) applied the method to a wide class of interacting
fermions systems on a lattice.2 Among these works, Oshikawa, Yamanaka
and Affleck(9) pointed out the analogy between the magnetization plateaus
in a quantum spin chain and the conductance plateaus in the quantum
Hall system. In both systems, a non-zero excitation gap above a ground
state indeed plays an important role.

Using the Lieb�Schultz�Mattis method, an information about an
infinite-volume ground state or a low energy excitation can be obtained for
a translationally invariant system. In a quantum Hall system, it is believed
that a non-zero excitation gap above a ground state leads to the quantiza-
tion of the Hall conductance and the conductance plateaus. Therefore
knowledge about a ground state and a low energy excitation is very impor-
tant for the quantum Hall effect.
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1.1. The Main Results of This Paper

Our results are as follows:

v Let the filling & of the Landau levels be a non-integer. Then, either
(i) there is a symmetry breaking at zero temperature or (ii) there is only
one infinite-volume ground state with a gapless excitation.

v If a pure infinite-volume ground state has a non-zero excitation gap
for a non-integer filling &, then a translational symmetry breaking occurs at
zero temperature.

v Suppose that there is no non-translationally invariant infinite-
volume ground state. Then, if a pure infinite-volume ground state has a
non-zero excitation gap, the filling factor & must be equal to a rational
number. Here the ground state is allowed to have a periodic structure
which is a consequence of the translational symmetry breaking.

Here we stress that these statements hold also for a fixed macroscopic
width of the strip and a fixed integer nmax giving a macroscopic energy.
But, in the proofs, the structure of the low energy excitation constructed by
using the Lieb�Schultz�Mattis method strongly depends on the width of
the strip and the energy cutoff nmax . In particular, the size of the locally
excited region must increase with increasing the cutoffs for keeping a small
excitation energy. For this issue, we will give a discussion in Section 2.5.
In the next Section 2, the above results will be given again as our main
theorems in a mathematically rigorous manner. The mathematically precise
definitions of the filling factor &, an infinite-volume ground state and an
excitation gap also will be given in the section.

1.2. Physical Meaning of the Results

Let us briefly discuss the physical meaning of the above our three
results. To begin with, we remark the following: For an integer filling &,
a ground state has a trivial non-zero excitation gap3 which comes from the
Landau levels for the non-interacting system if the magnetic field is suf-
ficiently strong compared to the electron-electron interaction. We also
remark that, without an interaction, there is no non-trivial structure lead-
ing to the fractional quantization of the Hall conductance. Thus we are
interested in the case with a non-integer filling & and with an interaction.

Since a non-trivial excitation gap above a ground state for a non-
integer filling & plays an important role for the fractional quantization of

315Spectral Gaps of Quantum Hall Systems with Interactions

3 It goes without saying that the integral quantization of the Hall conductance and the
appearance of the conductance plateaus are non-trivial and suprising phenomena.(12, 13)



the Hall conductance, the first case (i) in the first result is of interest to us.
In this situation, a translational symmetry breaking occurs at zero tem-
perature. This is the second result. In addition, if the electron-electron
interaction is repulsive, we can expect that there is no non-translationally
invariant ground state.4 But a pure infinite-volume ground state exhibits a
periodic structure as a consequence of the translational symmetry breaking.
Conversely, if the electron-electron interaction is attractive, we can expect
that there is a phase separation which implies the existence of a non-trans-
lationally invariant ground state with no periodic structure. Thus, for the
repulsive case, the assumption of the third result, i.e., the absence of non-
translationally invariant ground states, is expected to be vaild. With this
assumption, the third result states that the filling factor & must be equal to
a rational number in the case of interest that there is a non-zero excitation
gap above the ground state. Physically this implies that there appears a
commensurate phase at zero temperature with a rational filling &.

1.3. The Relation Between the Results and the Quantized Hall
Conductance

Next we discuss the relation between the third result and the fractional
quantization of the Hall conductance. The statements below in this sub-
section are not justified without additional assumptions to those of our
present results.

To begin with, we briefly state our result about the Hall conductance
in a separate paper.(14) We treated a two-dimensional electrons gas in a
uniform magnetic field for a wide class of potentials including single-body
potentials with disorder and repulsive electron-electron interactions. We
stress that there is a wide class of common models which are included in
both the class of ref. 14 and that of the present paper. We obtained the
following result: If there is a non-zero excitation gap above the ground
state(s), then the Hall conductance _xy in the infinite-volume limit is given
by5

_xy=&
e2

h
& (1.1)
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always yields an integral quantization of the Hall conductance without ad hoc assump-
tions.(16) Since we did not rely on such an argument in our derivation of the Hall conduc-
tance, our result includes both integral and fractional quantizations of the Hall conductance.
For earlier theoretical works on the Hall conductance, see refs. 17.



where &e is the charge of electron, h is the Planck constant, and we
assumed a regularization about a uniform electric field in the derivation of
the Hall conductance. See ref. 14 for the mathematically rigorous statement.
Unfortunately, the condition of a gap is different from that of the third
result in the present paper, and we do not know the relation between the
two conditions in a mathematically rigorous sense. In the rest of this sub-
section, we will use the conductance formula (1.1) without carefully
examining the condition of a gap.

Let us consider a common model mentioned above, and make the
assumptions for the third result in the present paper. Then we clearly have
the fractional quantization of the Hall conductance by combining the
rational filling & of the third result with the conductance formula (1.1).
Roughly speaking, a fractional filling factor & with a non-zero excitation
gap above a ground state gives the fractionally quantized Hall conduc-
tance. Next introduce weak disorder so that the non-zero excitation gap
above the ground state in the clean system persists against disorder. Then
we have the fractional quantization of the Hall conductance again because
the conductance formula holds even for the presence of disorder.

The appearance of a Hall conductance plateau due to disorder will be
discussed with relation to localization of wavefunctions in another separate
paper.(18)

1.4. A Phenomenological Explanation for the Odd
Denominator Rule

Experimental results show the suprising fact that odd denominators of
filling fractions & for which the quantization of the Hall conductance
occurs, are favored exclusively. Namely non-zero excitation gaps appear
only for filling fractions & with odd denominators except for a few filling
fractions with even denominators.(19) Having our results in mind, we shall
discuss the reason. Consider first the problem of two electrons with a
repulsive interaction in a uniform magnetic field. Clearly the two electrons
exert opposing forces on each other. But they cannot separate in the large
distance because of the magnetic field. From this naive observation, one
can expect that two electrons favor a bound pair(20) in a quantum Hall
system.

Write &= p�q with p, q mutually prime integers. Then there are p
electrons and q& p holes on q lattice sites, where the lattice is defined by
an identification with the set of wavenumbers for the eigenvectors of
the single-electron Landau Hamiltonian with the Landau gauge.6 Each
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wavenumber is identical to the center of a harmonic oscillator part of an
eigenvector. The set of all the centers is identical to the one-dimensional
lattice. Assume q is an even integer. Then both p and q& p are odd. This
implies that neither the electrons nor the holes are grouped into bound
pairs on the q lattice sites. To form a stable pairing state, we need 2q lattice
sites which lead to a periodic structure with the period 2q. Here the peri-
odic structure is a consequence of a translational symmetry breaking.
However, the filling &= p�q is expected to lead to a structure with the
period q, not 2q. In consequence, we cannot expect a ground state with a
non-zero excitation gap for an even denominator. Next assume q is odd.
Then there are two possibilities: (i) p is odd and q& p is even. (ii) p is even
and q& p is odd. Namely, either the number of the holes or the number of
the electrons is even. Therefore either the holes or the electrons are grouped
into bound pairs on the q lattice sites. In comparison to the case with an
even denominator, we can expect a stable state, i.e., a ground state with a
non-zero excitation gap. Unfortunately this is a phenomenological explana-
tion which is still not justified.

1.5. Outline of This Paper

This paper is organized as follows: In Section 2, we give the precise
definition of the model and some notions related to an infinite-volume
ground state, and describe our main theorems in a mathematically rigorous
manner. As preliminaries for the proofs of our theorems, we briefly review
the eigenvalue problem of the single-electron Landau Hamiltonian and the
degeneracy of finite-volume ground states in an interacting electrons system
in Section 3. In Section 4, we construct a candidate for a low energy excita-
tion above a ground state by using the Lieb�Schultz�Mattis method, and
prove our main theorems. Section 5 is devoted to a proof of a proposition
about the orthogonality between the excited and the ground states. The
energy gaps are estimated in Section 6. For the convenience of readers,
Appendices A�E are devoted to proofs of some technical theorem and
lemmas.

2. THE MODEL AND THE MAIN THEOREMS

The purpose of this section is to describe our main theorems in a
mathematically rigorous manner after giving mathematically precise defini-
tions of an infinite-volume ground state and of a excitation gap for the
quantum Hall system we consider.
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2.1. The Hamiltonian

Consider a two-dimentional interacting electrons gas in a uniform
magnetic field in a rectangular box S :=[&Lx �2, Lx �2]_[&Ly �2, Ly �2].
Although we consider electrons without spin degrees of freedom in this
paper, our method is applied also to a quantum Hall system with spin
degrees of freedom or with multiple layers.

The Hamiltonian of N electrons without spin degrees of freedom is
given by

H (N )= :
N

j=1

1
2me

[( px, j&eBy j )
2+ p2

y, j]+ :
N

j=1

W(xj )+U (N )(r1 , r2 ,..., rN)

(2.1)

where me and &e are, respectively, the mass of electron and the charge of
electron, and (0, 0, B) is the uniform magnetic field perpendicular to the
x& y plane in which the electrons are confined; rj=(xj , yj ) is the j th
Cartesian coordinate of the N electrons, and

px, j=&i�
�

�x j
and py, j=&i�

�
�y j

(2.2)

with the Planck constant �. The single-body potential W is a function of x
only such that W is essentially bounded, i.e., &W&�<W0<� with a
positive constant W0 which is independent of Lx , Ly , and that W satisfies
a periodic boundary condition as

W(x+Lx)=W(x) for any x # R (2.3)

A simple example of W is7

W(x)=W0 cos }x with }=
2?
Lx

n, n # Z (2.4)

where W0 is a real constant. The interaction U (N ) is written in a sum of
two-body interactions as

U (N )(r1 ,..., rN)= :
i< j

U (2)(xi&x j , y i& y j ) (2.5)
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The two-body interaction U (2) is invariant under the exchange of two coor-
dinates of the electrons, i.e.,

U (2)(&x, &y)=U (2)(x, y) (2.6)

We assume that U (2) satisfies the periodic boundary conditions

U (2)(x+Lx , y)=U (2)(x, y+Ly)=U (2)(x, y) (2.7)

Further we assume that U (2) is continuous on R2, and satisfies

|U (2)(x, y)|�U0[1+[dist(x, y)�r0]2]&#�2 for (x, y) # R2 (2.8)

with #>2 and with positive constants U0 , r0 . Here the distance is given by

dist(x, y) :=- min
m # Z

[ |x&mLx | 2]+min
n # Z

[ | y&nLy |2] (2.9)

We take LxLy=2?Ml2
B with a sufficienlty large positive integer M. Here

lB is the magnetic length, i.e., lB :=- ��eB . For simplicity, we take M even.
This condition for Lx , Ly is convenient for imposing periodic boundary
conditions as follows: For an N-electron wavefunction 8(N ), we impose
periodic boundary conditions

t (x)
j (Lx) 8(N )(r1 , r2 ,..., rN)=8(N )(r1 , r2 ,..., rN) (2.10)

and

t ( y)
j (Ly) 8(N )(r1 , r2 ,..., rN)=8(N )(r1 , r2 ,..., rN) (2.11)

for j=1, 2,..., N. Here t(x)( } } } ) and t ( y)( } } } ) are magnetic translation
operators(21) defined as

t(x)(x$) f (x, y)= f (x&x$, y)
(2.12)

t( y)( y$) f (x, y)=exp[iy$x�l2
B] f (x, y& y$)

for a function f on R2, and a subscript j of an operator indicates that the
operator acts on the j th coordinate of a function.8 The ranges of x$ and y$
are given by (see Section 3.1)

x$=m 2x with m # Z and y$=n 2y with n # Z (2.13)
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where the minimal units of the translations are given by

2x :=
h

eB
1

Ly
and 2y :=

h
eB

1
Lx

(2.14)

Owing to certain technical reasons,9 we must restrict the whole Hilbert
spapce to the lowest (nmax+1) Landau levels with a large positive integer
nmax . In order to give a more precise definition of the restriction, consider
the Hamiltonian of a single electron given by

H=
1

2me
[( px&eBy)2+ p2

y] (2.15)

with periodic boundary conditions

,(x, y)=t(x)(Lx) ,(x, y), ,(x, y)=t ( y)(Ly) ,(x, y) (2.16)

for the wavefunction ,, with Lx Ly=2?Ml2
B with M even. The explicit

forms of the normalized eigenvectors ,P
n, k of the Hamiltonian H are given

in Section 3.1. Here n # [0, 1, 2,...] is a Landau index, and k is a wavenum-
ber given by k=2?m�Lx with m # 4(M )=[&M�2+1, &M�2+2,..., M�2].
The energy eigenvalue is given by

En, k :=(n+ 1
2) �|c (2.17)

with |c :=eB�me . The system [,P
n, k]n, k is the orthonormal complete

system.
Now we define the restriction of the Hilbert space, i.e., the energy

cutoff. For a nonnegative integer nmax , we define by P(nmax) the spectral
projection onto the subspace spanned by all the eigenvectors with the
Landau indices n�nmax . Namely, by the projection P(nmax), the whole
Hilbert spapce is restricted to the lowest (nmax+1) Landau levels. The
corresponding N electrons Hamiltonian is given by

H (N )(nmax)=P(N )(nmax) H (N )P(N )(nmax) (2.18)

with the projection

P(N )(nmax) :=}
N

j=1

Pj (nmax) (2.19)
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2.2. A C* Algebraic Approach

Throughout the present paper, we consider the thermodynamic limit
Ly � � for a fixed Lx and a fixed nmax . Namely we consider an infinitely
long strip with a finite width10 Lx . In this limit, we also fix the filling factor
& which is given by &=N�M for a finite volume with Lx Ly=2?Ml2

B . For
treating the infinite-volume system, it is convenient to introduce the notion
of local observables by following the idea of a C* algebra.(22) Although a
C* algebra must be a fairly mathematical tool, it enables us to avoid con-
fusion between the degeneracy of finite-volume ground states and that of
infinite-volume ground states.(23) In addition it clarifies the notions of low
energy excitations and of a gap above an infinite-volume ground state.

In order to introduce the notion of local observables, we first consider
the second quantized form of the Hamiltonian 2.18). It is written as11

H4(M)(nmax) := :
nmax

n=0

:
m # 4(M)

(n+ 1
2) �|cc*n, mcn, m

+:
j, :

:
j $, :$

W( j, :: j $, :$) c*j, :cj $, :$

+ 1
2 :

j, :

:
l, ;

:
j $, :$

:
l$, ;$

U (2)( j, :; l, ; : j $, :$; l$, ;$)

_c*j, : c*l, ;c j $, :$cl$, ;$ (2.20)

with

W( j, : : j $, :$) :=|
S

dx dy[,P
j, p(x, y)]* W(x) ,P

j $, p$(x, y) (2.21)

and

U (2)( j, :; l, ; : j $, :$; l$, ;$)

:=|
S

dx dy |
S

dx$ dy$[,P
j, p(x, y)]* [,P

l, q(x$, y$)]*

_U (2)(x&x$, y& y$) ,P
j $, p$(x$, y$) ,P

l$, q$(x, y) (2.22)
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Here we have written

p=2?:�Lx , q=2?;�Lx , p$=2?:$�Lx , q$=2?;$�Lx (2.23)

and cn, m and c*n, m are, respectively, the electron annihilation and creation
operators for the eigenstate ,P

n, k of the single electron Landau Hamiltonian
H of (2.15) with the wavenumber k=2?m�Lx . These annihilation and
creation operators satisfy the canonical anticommutation relations as

[cn, m , cn$, m$]=0, [cn, m , c*n$, m$]=$n, n$ $m, m$ (2.24)

We can identify the quantum number m # 4(M ) with the lattice site m in the
one-dimentional lattice 4(M )=[&M�2+1, &M�2+2,..., M�2]. In other
words, the set of all the wavenumbers k is identical to the one-dimentional
lattice. A wavenumber k is corresponding to the center of the harmonic
oscillator part of the wavefunction12 ,P

n, k . From this identification, the
present system of the Hamiltonian H4(M)(nmax) of (2.20) is identical to a
one-dimentional lattice fermions system with long-range interactions and
without spin degrees of freedom. Then the original Landau levels with a
wavenumber k=2?m�Lx are interpreted as atomic levels at the correspond-
ing lattice site m.

We note that the electron�electron interaction U (2) of the present
system satisfies the condition

lim
4(M) A Z

max
j, :

:
l, ;

:
j $, :$

:
l$, ;$

|U (2)( j, :; l, ; : j $, :$; l$, ;$)|<� (2.25)

One can easily prove this condition by using Lemmas 6.3 and 6.4 below.
By this condition, the total energy of a finite volume is of order of the
volume. Further, the condition guarantees the existence of the time evolu-
tion of a local observable. Roughly speaking, the condition is equivalent to

|
R2

dx dy |U (2)(x, y)|<� (2.26)

Clearly this condition is too strong. In fact, the standard Coulomb inter-
cation does not satisfy the condition.

Since the operator c*n, m creates the single electron wavefunction ,P
n, k in

the Lx_Ly rectangular box in the Fock space, the annihilation and crea-
tion operators cn, m , c*n, m depend on the system size Ly . This fact is not
convenient for introducing local observables in the following because it is
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very hard to treat the outside of the rectangular box with the operators
cn, m , c*n, m . In order to avoid this difficulty, we introduce different abstract
annihilation and creation operators c~ n, m , c~ *n, m with m # Z :=[..., &2, &1,
0, 1, 2,...]. These operators also obey the canonical anti-commutation
relations

[c~ n, m , c~ n$, m$]=0, [c~ n, m , c~ *n$, m$]=$n, n$ $m, m$ (2.27)

Namely c~ n, m , c~ *n, m are defined on the infinite lattice Z. We replace
cn, m , c*n, m with c~ n, m , c~ *n, m in the Hamiltonian (2.20). As a result, we have
the Hamiltonian

H� 4(M)(nmax) := :
nmax

n=0

:
m # 4(M)

(n+ 1
2) �|cc~ *n, mc~ n, m

+:
j, :

:
j $, :$

W( j, : : j $, :$) c~ *j, :c~ j $, :$

+ 1
2 :

j, :

:
l, ;

:
j $, :$

:
l$, ;$

U (2)( j, :; l, ; : j $, :$; l$, ;$)

_c~ *j, : c~ *l, ;c~ j $, :$c~ l$, ;$ (2.28)

with the same periodic boundary conditions on the same finite lattice 4(M )

as in H4(M)(nmax). Clearly H� 4(M)(nmax) has the same spectrum as that of
H4(M)(nmax).

Now we introduce local observables. Let 4 be a subset of Z. We
denote by A4 the set of all the observables generated by all the annihilation
c~ n, m and the creation c~ *n$, m$ operators with m, m$ # 4 and with n, n$ #
[0, 1,..., nmax]. We define the set of the local observables Aloc as

Aloc := .
4/Z; |4|<�

A4 (2.29)

Let 4c be the complement of the lattice 4, i.e., 4c=Z"4. Then A4c is the
algebra for the outside of 4. Roughly speaking, the algebra A4c is an
algebra for the outside of the Lx_Ly rectangular box because an original
wavenumber k=2?m�Lx is identical to the center of the harmonic
oscillator part of the wavefunction ,P

n, k .
Next we introduce a set of U(1) global gauge transformations. A global

gauge transformation U% in the set is defined as

U% (c~ n, m)=e&i%c~ n, m , U% (c~ *n, m)=ei%c~ *n, m (2.30)
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with % # [0, 2?). Namely a U(1) gauge transformation U% is a global phase
twist with a real angle % for the quantum mechanical phase of wavefunc-
tions. Following Matsui, (26) we define by AU(1)

loc the U(1) gauge invariant
part of Aloc , i.e.,

AU(1)
loc :=[a # Aloc | U% (a)=a for all % # [0, 2?)] (2.31)

2.3. Infinite-Volume Ground States and Excitation Gaps

Let 8� (N )
4(M) be a normalized N electrons ground state of the Hamiltonian

H� (N )
4(M)(nmax) of (2.28). Clearly 8� (N )

4(M) is identical to a ground state 8 (N )
Ly

of the
Hamiltonian H (N )

Ly
(nmax) :=H (N )(nmax) of (2.18) with the system size Ly in

the y direction. Then an infinite-volume ground state | can be constructed
as13

|(a)= lim
4(M) A Z

(8� (N )
4(M) , a8� (N )

4(M)) (2.32)

for a local observable a # AU(1)
loc , and for fixed Lx , nmax and &. All the

infinite-volume ground states thus obtained are not necessarily complete as
physically natural ground states. See ref. 27 for example. We use a more
general definition of infinite-volume ground states as follows: A state |,
i.e., a positive normalized linear functional, on local observables AU(1)

loc is
an infinite-volume ground state if and only if | satisfies the local stability
condition14

lim
4 A Z

|(a*[H� 4(nmax), a])�0 (2.33)

for any local observable a # AU(1)
loc . From the definition of the vector 8� (N )

4(M) ,
the infinite-volume ground state (2.32) satisfies the condition (2.33) as

lim
4 A Z

|(a*[H� 4(nmax), a])

= lim
4(M) A Z

(8� (N )
4(M) , a*[H� 4(M)(nmax)&E (N )

Ly
] a8� (N )

4(M))

= lim
Ly A �

(8 (N )
Ly

, â*[H (N )
Ly

(nmax)&E (N )
Ly

] â8 (N )
Ly

)�0 (2.34)

for a # AU(1)
loc . Here E (N )

Ly
is the energy eigenvalue of 8 (N )

Ly
for the

Hamiltonian H (N )
Ly

(nmax) of (2.18), and â is the observable corresponding to
the observable a.
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We denote by { ( y)
j the shift operator by j lattice sites in the y direction.

Namely the shift operator is defined as

{( y)
j (c~ n, m)=c~ n, m+ j , { ( y)

j (c~ *n, m)=c~ *n, m+ j (2.35)

Let | be an infinite-volume ground state. We say that | is translationally
invariant with a period q # N :=[1, 2,...] if and only if | satisfies

|({ ( y)
q ( } } } ))=|( } } } ) (2.36)

If a ground state | has a non-trivial minimal period q{1, then a trans-
latinal symmetry beaking occurs at zero temperature. If a ground state |
has no period, then we say that | is a non-translationally invariant ground
state.

Consider the Hamiltonian with a chemical potential +,

H� 4, +(nmax) :=H� 4(nmax)&+ :
nmax

n=0

:
m # 4

n~ n, m (2.37)

with the electron number operator

n~ n, m :=c~ *n, mc~ n, m (2.38)

For the grand-canonical emsemble, the definition of an infinite-volume
ground state is given as follows: A state | is an infinite-volume ground
state if and only if

lim
4 A Z

|(a*[H� 4, +(nmax), a])�0 (2.39)

for any a # Aloc . Matsui(26) proved an equivalence between a canonical
emsemble and a grand-canonical emsemble for a lattice fermion system
with a certain interaction. The following theorem for the present quantum
Hall system follows from the Matsui's result.

Theorem 2.1. Let | be a translationally invariant infinite-volume
ground state with a period for AU(1)

loc . Then there exists a chemical poten-
tial + such that the gauge invariant extension |~ of | to Aloc is an infinite-
volume ground state for Aloc .

A sketch of the proof is given in Appendix A.
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Next we shall introduce a definition of a gap above an infinite-volume
ground state. For this purpose, we first define the time evolution of a local
observable a # Aloc as

{t, 4(a) :=exp[iH� 4, +(nmax) t��] a exp[&iH� 4, +(nmax) t��] (2.40)

and its infinite-volume limit,

{t(a) := lim
4 A Z

{t, 4(a) (2.41)

In the sense of the norm, this limit exists uniformly for time t in a compact
set. Let A be the norm completion of Aloc . Then {t(a) is defined also for
a # A. Further we define

{V f (a) :=|
+�

&�
dt f (t) {t(a) (2.42)

for a function f on R and a # A when the right-hand side exists. We denote
by C �

0 the set of infinitely differentiable functions with compact support.

Definition 2.2. An infinite-volume ground state | has a gap # if
and only if the following condition is satisfied: Let f be a function on R
with Fourier transform f� # C �

0 and supp f� �(0, #), then

|([{V f (a)]* {V f (a))=0 (2.43)

for all a # A.

This definition of a gap is slightly different from that in ref. 7. For the
gauge invariant extension |~ of | of (2.32), the left-hand side of (2.43)
becomes

|~ ([{ V f (a)]* {V f (a))

= lim
4 A Z

(8� (N )
4 , a*[ f� ([H� 4, +(nmax)&E (N )

Ly
++N ]��)]2 a8� (N )

4 ) (2.44)

Thus the above definition of a gap above an infinite-volume ground state
is a physically natural definition for the states | of (2.32). In particular, the
gap condition (2.43) becomes

lim
4 A Z

(8� (N )
4 , a*[ f� ([H� 4(nmax)&E (N )

Ly
]��)]2 a8� (N )

4 )

= lim
Ly � �

(8 (N )
Ly

, â*[ f� ([HLy
(nmax)&E (N )

Ly
]��)]2 â8 (N )

Ly
) =0 (2.45)
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for a # AU(1)
loc . Here â is the observable corresponding to the observable a.

We remark that | is an infinite-volume ground state for Aloc if and only
if the following condition is satisfied: Let f be a function on R with Fourier
transform f� # C �

0 and supp f� �(&�, 0), then

|([{V f (a)]* {V f (a))=0 (2.46)

for all a # A. See ref. 22 for the detail.

2.4. Main Theorems of This Paper

Now we describe our main theorems. In the following, we fix the width
Lx of the strip and the energy cutoff nmax to finite values.

Theorem 2.3. Suppose the filling factor & is not an integer. Then,
either (i) there is more than one infinite-volume ground state or (ii) there
is only one infinite-volume ground state with a gapless excitation.

In the case (i), there is a symmetry breaking at zero temperature. Since
a non-zero excitation gap plays an important role for the quantization of
the Hall conductance in a qunatum Hall system, we are not interested in
the case (ii).

Theorem 2.4. Suppose that the filling factor & is not an integer and
that a pure infinite-volume ground state has a non-zero excitation gap.
Then a translational symmetry breaking occurs at zero temperature.

Thus a translational symmetry breaking inevitably occurs in the situa-
tion where there appears a fractional quantization of the Hall conductance
which is observed with a non-zero excitation gap for a fractional filling. In
a realistic situation where the electron-electron interaction is repulsive, we
can expect that there is no non-translationally invariant ground state with
no periodic structure as we mentioned in Section 1.2.

Theorem 2.5. Suppose that there is no non-translationally
invariant infinite-volume ground state. Then, if a pure infinite-volume
ground state | has a non-zero excitation gap, the filling factor & must be
equal to a rational number. In particular, if the ground state has a periodic
structure with a minimal period q # N for the magnetic translation in the
y direction, the filling factor & must satisfy q& # N.

Here, if the period q is equal to the denominator of the filling & as in
a usual commesurate phase, we have &= p�q with p, q mutually prime
integers. The relation between Theorem 2.5 and the fractional quantization
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of the Hall conductance was already discussed with the results of a separete
paper(14) in Section 1.3. The appearance of the Hall conductance plateau
will be discussed with relation to localization of wavefunctions in another
separate paper.(18)

2.5. The Finite Width of the Strip and the Energy Cutoff nmax

In the above we have fixed the width Lx of the strip and the energy
cutoff nmax to finite values. Although the statements of our three theorems
hold even for a fixed macroscopic width and for a fixed nmax giving a
macroscopic energy cutoff, the structure of the low energy excitation con-
structed by using the Lieb�Schultz�Mattis method strongly depends on
these cutoffs. In particular, the size of the locally excited region must
increase with increasing the cutoffs for keeping a small excitation energy.
Before concluding this section, we shall give discussions about this cutoff
dependence of the excitation and about the two-dimensional infinite-
volume system with no such restrictions.

Consider first the energy cutoff nmax . We recall the model described by
the Hamiltonian (2.28). The model is identical to a one-dimentional lattice
fermion system with long-range interactions. The range of the interactions
strongly depends on the cutoff nmax . Actually the effective range seems to
increase with increasing the energy of a fermion state. As a result, the upper
bound of the excitation energy of the state constructed by using the Lieb�
Schultz�Mattis method depends on the cutoff nmax and is divergent as nmax

tends to infinity. For the explicit cutoff dependence,15 see Section 6.
Although we need an infinitesimally small upper bound of the excitation
energy for a large volume, we can not get a desired one without the cutoff.
This is nothing but the reason why we introduced the cutoff nmax into the
Hilbert space. However, one can expect generally that the contribution of
very high energy states to low energy quantities is negligibly small. In fact,
the energy of the excitation constructed by the Lieb�Schultz�Mattis
method can be written in the ground state expectation of an operator. (See
Section 4 for the detail.) Clearly the difference between the ground state
expectation with the cutoff and that without the cutoff is determined by the
high energy states which are cut off. If the contribution of the high energy
states is negligibly small, then the upper bound of the energy of the excita-
tion thus constructed is independent of the cutoff nmax , and we can remove
the cutoff. Unfortunately we could not get a useful estimate for the con-
tribution of the high energy states.
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Next we give a discussion about the cutoff Lx of the width of the strip.
In order to prove our main three theorems, we construct a low energy
excitation above a ground state by relying on the Lieb�Schultz�Mattis
method. Here we stress that locality of the excitation is absolutely essential
for the proofs. However, the constructed excitation is extended homoge-
neously from end to end in the x direction. (See Section 4 for the detail.)
Moreover, in the y direction it has a linear size $y which strongly depends
on the width Lx as

$y B L3+=
x (2.47)

Here = is a positive small number. For the detail, see Section 6.1.2. In order
to treat the two-dimensional infinite-volume system with no such a cutoff
in this approach, we need to construct a low energy excitation state which
is local in both x and y directions. Unfortunately we could not construct
such a low energy state, and we fixed the width Lx to a finite value. In
order to overcome this difficulty, it seems to us that a new idea beyond the
Lieb�Schultz�Mattis method is required.

Although we failed to overcome the difficulty, we can give a physically
plausible argument to show the existence of a low energy excitation which
is local in both x and y directions. To begin with, we note the following
folk statement which is not generally justified, but physically plausible: If a
system with a volume has a low energy excitation, then the same system
with a larger volume also has a similar excitation in the sense that the
corresponding excitation in the larger system keeps the same orders of the
spatial extent and the excitation energy as those of the small system.
Having this folk statement in mind, let us consider the two quantum Hall
systems of infinitely long strips with the widths Lx and L$x>>Lx . Fix Lx .
Then we have an excitation with a low energy 2E and with the linear size
$y in the y direction and Lx in the x direction, following the Lieb�Schultz�
Mattis method. Here, if the above folk statement is true, we have a local
excitation with a low energy of the same order 2E and with the linear size
of order $y in the y direction and of order Lx in the x direction for the
system with the large width L$x . Thus we can expect the existence of a low
energy excitation which is local in both x and y directions. However, it is
not so easy to construct such an excitation. In fact, we could not construct
it.

In conclusion, we believe that our three results hold also for the two-
dimensional infinite-volume quantum Hall system without the energy and
the spatial cutoffs nmax , Lx , and that these conjectures will be justified in
future studies.
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3. PRELIMINARIES

As preliminaries for the proofs of our main theorems, we briefly review
the eigenvalue problem of the single-electron Landau Hamiltonian and the
degeneracy of finite-volume ground states in a quantum Hall system of an
interacting electrons gas. The degeneracy was found by Yoshioka, Halperin
and Lee.(28) For related works, see refs. 29.

3.1. The Single-Electron Landau Hamiltonian in
Two Dimensions

Consider the eigenvalue problem of the single-electron Hamiltonian

H=
1

2me
[( px&eBy)2+ p2

y] (3.1)

on the infinite plane R2. In order to obtain an eigenvector of the
Hamiltonian H, put its form as

,(x, y)=eikxv( y) (3.2)

with a wavenumber k # R. Substituting this into the Schro� dinger equation
H,=E,, one has

_ 1
2me

(�k&eBy)2+
1

2me
p2

y & v( y)=Ev( y) (3.3)

Clearly this is identical to the eigenvalue equation of a quantum harmonic
oscillator as

_&
�2

2me

�2

�y2+
e2B2

2me \y&
�k
eB+

2

& v( y)=Ev( y) (3.4)

The eigenvectors are

vn, k( y) :=vn( y& yk) :=Nn exp[&( y& yk)2�(2l2
B)] Hn[( y& yk)�lB] (3.5)

where Hn is the Hermite polynomial, yk=�k�eB, and Nn is the positive
normalization constant so that

|
+�

&�
dy |vn, k( y)|2=1 (3.6)
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The eigenvalues are given by

En, k=(n+ 1
2) �|c for n=0, 1, 2,... (3.7)

with |c=eB�me . Thus the eigenvectors of the Hamiltonian H of (3.1) are
given by

,n, k(x, y)=e ikxvn, k( y) (3.8)

Next we consider a single electron in Lx_Ly rectangular box S=
[&Lx �2, Lx �2]_[&Ly�2, Ly�2] with LxLy=2?Ml2

B with an even
integer M. We impose periodic boundary conditions

,(x, y)=t(x)(Lx) ,(x, y), ,(x, y)=t ( y)(Ly) ,(x, y) (3.9)

for wavefunctions , on R2. We claim that, if f satisfies (3.9), then the
functions

f1(x, y)=t(x)(x$) f (x, y) (3.10)

and

f2(x, y)=t( y)( y$) f (x, y) (3.11)

also satisfy the same periodic boundary conditions. As a result, x$ and y$
are restricted into the following values:

x$=m 2x with m # Z, and y$=n 2y with n # Z

(3.12)

where

2x :=
h

eB
1

Ly
, and 2y :=

h
eB

1
Lx

(3.13)

One can easily show these statements. In fact one has

f1(x, y)= f (x&x$, y)

=exp[iLy(x&x$)�l2
B] f (x&x$, y&Ly)

=exp[&iLyx$�l2
B] exp[iLyx�l2

B] f (x&x$, y&Ly)

=exp[&iLyx$�l2
B] exp[iLyx�l2

B] f1(x, y&Ly)

=exp[&iLyx$�l2
B] t( y)(Ly) f1(x, y)

=exp[&iLyx$�l2
B] f1(x, y) (3.14)
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by the definitions. This implies Lyx$�l2
B=2?m with an integer m. Similarly

f2(x, y)=exp[iy$x�l2
B] f (x, y& y$)

=exp[iy$x�l2
B] f (x&Lx , y& y$)

=exp[iy$Lx �l2
B] exp[iy$(x&Lx)�l2

B] f (x&Lx , y& y$)

=exp[iy$Lx �l2
B] f2(x&Lx , y)

=exp[iy$Lx �l2
B] t (x)(Lx) f2(x, y)

=exp[iy$Lx �l2
B] f2(x, y) (3.15)

Thus y$Lx �l2
B=2?n with an integer n. Throughout the present paper we

restrict the ranges of the variables x$, y$ in the magnetic translations to
these values of (3.12).

Since

t( y)( y$)( px&eBy)[t( y)( y$)]&1= px&eBy (3.16)

for any y$, the Hamiltonian H of (3.1) is invariant under all the magnetic
translations t(x)( } } } ) and t ( y)( } } } ). Consider wavefunctions

,P
n, k(x, y)=L&1�2

x :
+�

l=&�

ei(k+lK ) xvn, k( y&lLy) (3.17)

for k=2?m�Lx with m=&M�2+1,..., M�2&1, M�2, and with K=Ly �l2
B .

These wavefunctions are eigenvectors of the Hamiltonian H of (3.1)
satisfying the periodic boundary conditions (3.9), because LxLy=2?Ml2

B

with the even integer M. The eigenvalues of ,P
n, k are given by (3.7). We

identify the integer m of a wavenumber k with a lattice site m in the one-
dimensional lattice [&M�2+1, &M�2+2,..., M�2&1, M�2], with the peri-
odic boundary conditions. Then there are (nmax+1) atomic levels at each
site in the present quantum Hall system because we have restricted the
Hilbert space to the lowest (nmax+1) Landau levels. An observable at a
site in the system can be expressed by a (nmax+2)_(nmax+2) matrix.
Therefore the present quantum Hall system is equivalent to a one-dimen-
tional spinless fermion system with long-range interactions. Here we should
remark that the lattice constant is given by 2y=2?��(eBLx) which tends
to zero as Lx � �. This causes us a technical problem for taking the limit
Lx � � as we will show in Section 6. This is why we must fix Lx to a finite
value.

In the rest of the present section, we review the properties of the
eigenfunctions (3.17) and check the completeness of the system of the
eigenfunctions.
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One can easily get the following lemma:

Lemma 3.1. The vector ,P
n, k of (3.17) is an eigenvector of the

magnetic translation t(x)(2x), i.e.,

t(x)(2x) ,P
n, k=e&ik 2x,P

n, k=e&i2?m�M,P
n, k with k=

2?m
Lx

(3.18)

and the magnetic translation t( y)(2y) shifts the wavenumber k of the vector
,P

n, k by one unit 2?�Lx as

t( y)(2y) ,P
n, k=,P

n, k$ with k$=k+
2y
l2

B

=k+
2?
Lx

(3.19)

As usual we denote by L2(S) the set of functions f on S such that

|
S

dx dy | f (x, y)|2=|
Lx �2

&Lx �2
dx |

Ly�2

&Ly�2
dy | f (x, y)|2<� (3.20)

Further we define the associate inner product ( f, g) as

( f, g)=|
S

dx dy[ f (x, y)]* g(x, y) (3.21)

for f, g # L2(S).

Lemma 3.2. Let f, g be functions on R2 such that f, g # L2(S), and
that f, g satisfy the boundary conditions (3.9). Then

( f, g)=|
Lx �2

&Lx �2
dx |

Ly�2+ y0

&Ly�2+ y0

dy[ f (x, y)]* g(x, y) (3.22)

for any y0 # R.

Proof. By the periodic boundary condition f (x, y)=t(x)(Lx) f (x, y),
the function f can be expanded in Fourier series as

f (x, y)=L&1�2
x :

k

eikxf� (k, y) (3.23)

Further, since

f (x, y)=t( y)(Ly) f (x, y)=L&1�2
x :

k

ei(k+K ) xf� (k, y&Ly)

=L&1�2
x :

k

eikxf� (k&K, y&Ly) (3.24)
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the following relation holds:

f� (k, y)= f� (k&K, y&Ly) (3.25)

Using this relation repeatedly, the function f of (3.23) can be rewritten as

f (x, y)= :
[k=2?n�Lx | &M�2+1�n�M�2]

L&1�2
x :

+�

l=&�

ei(k+lK ) xf� (k, y&lLy)

(3.26)

This expression yields

( f, g)=|
Lx �2

&Lx �2
dx |

Ly�2

&Ly �2
dy[ f (x, y)]* g(x, y)

= :
[k=2?n�Lx | &M�2+1�n�M�2]

:
+�

l=&�
|

Ly�2

&Ly�2
dy[ f� (k, y&lLy)]*

_ĝ(k, y&lLy)

= :
[k=2?n�Lx | &M�2+1�n�M�2]

|
+�

&�
dy[ f� (k, y)]* ĝ(k, y)

= :
[k=2?n�Lx | &M�2+1�n�M�2]

:
+�

l=&�
|

Ly�2+ y0

&Ly �2+ y0

dy

_[ f� (k, y&lLy)]* ĝ(k, y&lLy)

=|
Lx �2

&Lx �2
dx |

Ly�2+ y0

&Ly �2+ y0

dy[ f (x, y)]* g(x, y) K (3.27)

Let us check that the set of the eigenvectors [,P
n, k] of (3.17) forms an

orthonormal complete system. From the third equality in (3.27) in the
proof of Lemma 3.2, the orthogonality is valid as

(,P
n$, k$ , ,P

n, k)=|
+�

&�
dy v*n$, k( y) vn, k( y) $k, k$=$n, n$ $k, k$ (3.28)

Here $k, k$ is the Kronecker delta. To show the completeness, consider a
function f satisfying the boundary conditions (3.9). In the same way,

(,P
n, k , f )=|

+�

&�
dy v*n, k( y) f� (k, y) (3.29)

This implies that the function f must be zero if the inner product (,P
n, k , f )

is vanishing for all the vectors ,P
n, k .
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3.2. Degeneracy of Finite-Volume Ground States

In this section, we review the degeneracy(28) of the finite-volume
ground states of a quantum Hall system. A wide class of quantum Hall
systems without disorder has the property. As an example, we consider an
interacting N electrons gas in a uniform magnetic field, whose
Hamiltoanian is given by

H (N )= :
N

j=1

1
2me

[( px, j&eBy j )
2+ p2

y, j]+U (N )(r1 , r2 ,..., rN) (3.30)

which is the Hamiltonian H (N ) of (2.1) with no single-body potential W.
Clearly the system has the translational invariance.

To begin with, we recall the properties of the magnetic translations.
From the definitions (2.12) of the magnetic translations t(x)( } } } ) and
t( y)( } } } ), one can easily get

t(x)(x$) t ( y)( y$) f (x, y)=t(x)(x$) exp[iy$x�l2
B] f (x, y& y$)

=exp[iy$(x&x$)�l2
B] f (x&x$, y& y$)

=exp[&ix$y$�l2
B] t( y)( y$) t(x)(x$) f (x, y) (3.31)

for a function f. This implies

t(x)(x$) t ( y)( y$)=exp[&ix$y$�l2
B] t ( y)( y$) t(x)(x$) (3.32)

We define the magnetic translations T (N, x)(x$) and T (N, y)( y$) for an N
electrons state as

T (N, x)(x$)=}
N

j=1

t (x)
j (x$) (3.33)

and

T (N, y)( y$)=}
N

j=1

t ( y)
j ( y$) (3.34)

From the commutation relation (3.32), one has

T (N, x)(x$) T (N, y)( y$)=exp[&ix$y$N�l2
B] T (N, y)( y$) T (N, x)(x$) (3.35)

In particular,

T (N, x)(2x) T (N, y)(2y)=exp[&i2?&] T (N, y)(2y) T (N, x)(2x) (3.36)
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where &=N�M with M=Lx LyeB�h. The number & is nothing but the
filling factor for the Landau levels.

Note that all the magnetic translations T (N, y)( } } } ) and T (N )( } } } )
commute with the Hamiltonian H (N ) of (3.30). Let 8(N ) be a simultaneous
eigenvector of the Hamiltonian H (N ) and the magnetic translation operator
T (N, y)(2y), i.e.,

H (N )8(N )=E (N )8(N ), T (N, y)(2y) 8(N )=ei2?n�M8(N ), with n # Z

(3.37)

where E (N ) is the energy eigenvalue. Let 9 (N )=T (N, x)(2x) 8 (N ). Then the
vector 9 (N ) is an eigenvector of H (N ) with the same eigenvalue E (N ).
Further one can easily show

T (N, y)(2y) 9 (N )=T (N, y)(2y) T (N, x)(2x) 8(N )

=ei2?&T (N, x)(2x) T (N, y)(2y) 8(N )

=ei2?&ei2?n�MT (N, x)(2x) 8(N )

=ei2?&ei2?n�M9 (N ) (3.38)

by using the commutation relation (3.36). Thus 9 (N ) is also an eigenvector
of T (N, y)(2y). From these observations, one can notice the fact that, if
&= p�q with mutually prime positive integers p and q, then any energy level
of finite volume is at least q-fold degenerate.

4. THE LIEB�SCHULTZ�MATTIS METHOD

In this section, we construct a candidate for a low energy excitation
above a ground state by using the Lieb�Schultz�Mattis method.(6) Our
goal is to give the proofs of our main Theorems 2.3, 2.4 and 2.5. For
the convenience of readers, technical estimates in the proofs are given in
Sections 5 and 6 and Appendices B, C, D and E.

We denote by H (N )
Ly

(nmax) the restricted N electrons Hilbert space to
the lowest (nmax+1) Landau levels with the system size Ly in the y direc-
tion. Throughout this section, we fix nmax and Lx (the system size in the x
direction) to large numbers.

Let 8 (N )
Ly

be a normalized N electrons vector in H (N )
Ly

(nmax). We expand
8(N )

Ly
as

8 (N )
Ly

= :
[!j ]

a([!j ]) Asym[,P
!1

�,P
!2

� } } } �,P
!N

] (4.1)
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in terms of the eigenvectors ,P
n, k of (3.17) for the single-electron

Hamiltonian H of (3.1). Here we have written

!j=(nj , kj )=(nj , 2?mj �Lx) for j=1, 2,..., N (4.2)

i.e., ,P
!j

=,P
nj , kj

, and Asym[ } } } ] stands for the antisymmetrization. Note
that we have

T (N, x)(2x) 8 (N )
Ly

= :
[!j ]

a([!j ]) _`
N

j=1

e&i2?mj �M& Asym[,P
!1

�,P
!2

� } } } �,P
!N

]

(4.3)

from Lemma 3.1. This vector T (N, x)(2x) 8 (N )
Ly

is a vector globally twisting
the quantum mechanical phase for 8 (N )

Ly
. As we saw in the preceding sec-

tion, if 8 (N )
Ly

is a ground state of the Hamiltonian H (N ) of (3.30), the vector
T (N, x)(2x) 8 (N )

Ly
is a ground state, too. As Haldane pointed out, (23) the

degeneracy of the ground states does not directly lead to physical
significance because the degeneracy is related to the degree of freedom for
the center of the total mass. But we can construct a physically natural low
energy excitation above a ground state for the present Hamiltonian
H (N )(nmax) of (2.18), by combining the translational invariance in the y
direction with the Lieb�Schultz�Mattis method. To do this, we replace the
globally twisting phase change of (4.3) with a local one. Namely we con-
struct a locally perturbed state for a state 8 (N )

Ly
which is not necessarily a

ground state.
For this purpose, we introduce a unitary transformation U (l)

\, q with a
compact support for l, q # N as

U (l)
\, q8 (N )

Ly
:= :

[!j ]

a([! j ]) exp _\i2? :
N

j=1

m~ (mj )�l&
_Asym[,!1

�,!2
� } } } �,!N

] (4.4)

where

m~ (m) :={n,
0,

if (n&1) q<m�nq with n=1, 2,..., l

otherwise
(4.5)

for m # Z. Consider two vectors

9 (N )
\, Ly

:=U (l)
\, q8 (N )

Ly
(4.6)

which are locally perturbed vectors for 8 (N )
Ly

of (4.1), and

2E (N )
Ly

=' (N )
Ly

(H (N )
Ly

(nmax))&| (N )
Ly

(H (N )
Ly

(nmax)) (4.7)
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where

' (N )
Ly

( } } } )= 1
2 (9 (N )

+, Ly
, ( } } } ) 9 (N )

+, Ly
) + 1

2 (9 (N )
&, Ly

, ( } } } ) 9 (N )
&, Ly

) (4.8)

and

|(N )
Ly

( } } } )=(8 (N )
Ly

, ( } } } ) 8 (N )
Ly

) (4.9)

Here H (N )
Ly

(nmax) is the Hamiltonian H (N )(nmax) of (2.18) with the system
size Ly in the y direction. The vectors 9 (N )

\, Ly
are candidates for natural low

energy excitations when 8 (N )
Ly

leads to an infinite-volume ground state.
When 8 (N )

Ly
is a finite-volume ground state with the energy eigenvalue E (N )

Ly
,

we have

2E (N )
Ly

= 1
2 (9 (N )

+, Ly
, (H (N )

Ly
(nmax)&E (N )

Ly
) 9 (N )

+, Ly
)

+ 1
2 (9 (N )

&, Ly
, (H (N )

Ly
(nmax)&E (N )

Ly
) 9 (N )

&, Ly
) (4.10)

Thus 2E (N )
Ly

gives an upper bound for the energy gap.

Lemma 4.1. For any given small =>0, there exist l and L such
that

|2E (N )
Ly

|�= for any Ly�L (4.11)

This lemma gives an estimate for an energy gap above a ground state.
The proof is given in Section 6.

Next we study a condition for which 9 (N )
\, Ly

is orthogonal to 8 (N )
Ly

. We
define a local charge operator n̂m, n as

n̂n, m,P
n$, k$=$n, n$ $m, m$ ,P

n$, k$ (4.12)

with k$=2?m$�Lx . Further we define

n̂m := :
nmax

n=0

n̂n, m (4.13)

Proposition 4.2. Let 8 (N )
Ly

# H (N )
Ly

(nmax) be a normalized eigen-
vector of the magnetic translation T (N, y)(q 2y) with q # N. Write

|( } } } )=w*& lim
Ly � �

(8 (N )
Ly

, ( } } } ) 8 (N )
Ly

) (4.14)
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where the weak limit Ly � � is taken for a fixed Lx and a fixed filling
factor &. Suppose that the infinite-volume state | satisfies

lim
l � �

1
l2 :

l

i, j=1

|(n̂i n̂j )=&2 (4.15)

Then

lim
l � �

|(U (l)
\, q)=0 (4.16)

for q& � N.

The proof is given in Section 5. The idea of the proof is due to Hal
Tasaki.(30) From the proof, one can see that the statement of Proposi-
tion 4.2 holds for a wide class of systems with translational invariance.

Before giving the proofs of our main Theorems 2.3, 2.4 and 2.5, we
recall the GNS representation of a C* algebra A on a Hilbert space.16 Let
| be an infinite-volume state. Then there exist a Hilbert space H| , a nor-
malized vector 0| and a representation ?| of A on H| such that

|(a)=(0| , ?|(a) 0|) for any a # A (4.17)

Here, if | is a ground state, there exist a self-adjoint operator H|�0 on
H| such that

H| 0|=0, eitH| ��?|(a) e&itH|��=?|({t(a)) for any a # A (4.18)

Namely H| is the Hamiltonian in the infinite volume limit. Conversely, if
the vector 0| satisfies the conditions (4.18) for a self-adjoint operator
H|�0 on H| , then the corresponding state |( } } } )=(0| , ?|( } } } ) 0|) is
a ground state. Using this representation, the gapful condition (2.43) in
Definition 2.2 can be written as

(0| , [?|(a)]* [ f� (H|��)]2 ?|(a) 0|)=0 for any a # A (4.19)

Proof of Theorem 2.3. Let 8 (N )
Ly

be a normalized ground state of
the Hamiltonian H (N )

Ly
(nmax) of (2.18) and eigenvector of T (N, y)(2y), i.e.,

a translatinally invariant ground state for a finite volume. We fix the filling
factor & to a non-integer. Let 8� (N )

4 be the corresponding vector in the Fock
space HLy

(nmax) :=�N�0 H (N )
Ly

(nmax). We denote by | the infinite-volume
ground state, i.e.,

|( } } } )=w*& lim
4 A Z

(8� (N )
4 , ( } } } ) 8� (N )

4 ) (4.20)
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for AU(1)
loc . By Theorem 2.1, there exists a chemical potential + such that |

is an infinite-volume ground state for Aloc . Assume that | is the unique
ground state with the chemical potential +. Since a unique pure ground
state has the clustering property(22)

|(n̂i n̂j )&|(n̂i ) |(n̂ j ) � 0 as |i& j | � � (4.21)

we have

0= lim
l � �

lim
Ly � �

(8 (N )
Ly

, U (l)
\, 18 (N )

Ly
)

= lim
l � �

|(U� (l)
\, 1)

= lim
l � �

(0| , ?|(U� (l)
\, 1) 0|) (4.22)

from Proposition 4.2. Here U� (l)
\, 1 is the extension of U (l)

\, 1 to that in the
Fock space, ?| is the GNS representation of A on the Hilbert space H| ,
and 0| # H| is the ground state corresponding to |. This implies that the
vectors [?|(U� (l)

\, 1)&(0| , ?|(U� (l)
\, 1) 0|)] 0| are excitations above the

unique ground state 0| for a large l. Clearly the norms of these vectors go
to one as l � �.

Next we show the existence of a gapless excitation. Note that

(8(N )
Ly

, (U (l)
\, 1)* H (N )

Ly
(nmax) U (l)

\, 18 (N )
Ly

)&(8 (N )
Ly

, H (N )
Ly

(nmax) 8 (N )
Ly

)

=(8 (N )
Ly

, (U (l)
\, 1)* [H (N )

Ly
(nmax), U (l)

\, 1] 8 (N )
Ly

)

=(8� (N )
4 , (U� (l)

\, 1)* [H� 4(nmax), U� (l)
\, 1] 8� (N )

4 )

=(8� (N )
4 , (U� (l)

\, 1)* [H� 4, +(nmax), U� (l)
\, 1] 8� (N )

4 ) (4.23)

Further we have

lim
4 A Z

|((U� (l)
\, 1)* [H� 4, +(nmax), U� (l)

\, 1])

=(0| , [?|(U� (l)
\, 1)]* H| ?|(U� (l)

\, 1) 0|) (4.24)

in the thermodynamic limit because

lim
4 A Z

|(a*[H� 4, +(nmax), a])=(0| , [?|(a)]* [H| , ?|(a)] 0|) (4.25)

341Spectral Gaps of Quantum Hall Systems with Interactions



for any observable a in a domain for the commutator.17 Combining these
observations with Lemma 4.1, we have the following: For any given small
=>0, there exists l such that

(0| , [?|(U� (l)
\, 1)]* H| ?|(U� (l)

\, 1) 0|)�= (4.26)

This implies that there exists a gapless excitation above the unique ground
state. K

Proof of Theorem 2.4. Let the filling factor & be a non-integer, and
let | be a pure ground state with a non-zero excitation gap. Assume that
all the infinite-volume ground states are translationally invariant with the
period of one lattice unit, and we will find a contradiction. Without loss of
generality, we can assume that there exists a sequence of vectors [8� 4] such
that

|( } } } )=w*& lim
4 A Z

(8� 4 , ( } } } ) 8� 4) (4.27)

Each vector 8� 4 for a finite lattice 4 is expanded as

8� 4=:
N

:N8� (N )
4 (4.28)

in terms of the N electrons vectors 8� (N )
4 . Then we can assume, by the

assumption about the translational invariance, that the expectation
(8� (N )

4 , ( } } } ) 8� (N )
4 ) is translationally invariant with the period 1. Using the

expansion, we have

sin2(?&) ||(U� (l)
\, 1)|2�?2 _ 1

l2 :
l

s, t=1

|(n~ sn~ t)&&2& (4.29)

in the same way as in the proof of Proposition 4.2. Here n~ j is the number
operator corresponding to n̂j . Since the ground state | has the clustering
property due to the purity, we obtain

0= lim
l � �

|(U� (l)
\, 1)= lim

l � �
(0| , ?|(U� (l)

\, 1) 0|) (4.30)

from (4.29) with the assumption & � N. Here ?| is the GNS representation
of A on the Hilbert space H| , and 0| is the ground state corresponding
to the state |.
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Consider a vector 5=(1&G) ?|(U� (l)
\, 1) 0| , where G is the orthogonal

projection onto the sector of the ground states. We want to show that the
norm of 5 is non-vanishing in the limit l � �. Assume this is not true, and
we find a contradiction. This assumption is rephrased as follows: For any
given samll =>0, there exist a positive integer l0 such that

|(0|$ , ?|(U� (l)
\, 1) 0|)&1|<= for any l>l0 (4.31)

where 0|$ # H| is a normalized ground state which may depend on the
integer l. We decompose 0|$ as

0|$=c?|(U� (l)
\, 1) 0|+0$ with (0$, ?|(U� (l)

\, 1) 0|)=0 (4.32)

where c is a complex number. Immediately, we have

|1&c|<=, &0$&�- 2= (4.33)

Using these inequalities, we get

&|$( } } } )&|([U� (l)
\, 1]* ( } } } ) U� (l)

\, 1)&

=&(0|$ , ( } } } ) 0|$)&(0| , [?|(U� (l)
\, 1)]* ( } } } ) ?|(U� (l)

\, 1) 0|)&�=$

(4.34)

where =$=2(2=+- 2=). Since |$ and | are translationally invariant by the
assumption, we have

&a& =$�||$({ ( y)
& j (a))&|([U� (l)

\, 1]* { ( y)
& j (a) U� (l)

\, 1)|

=||$(a)&|({ ( y)
j ([U� (l)

\, 1]* { ( y)
& j (a) U� (l)

\, 1))|

=||$(a)&|({ ( y)
j ([U� (l)

\, 1]*) a{ ( y)
j (U� (l)

\, 1))| (4.35)

for any a # Aloc . In the limit j � �, we get

||$(a)&|(a)|=|(0|$ , ?|(a) 0|$)&(0| , ?|(a) 0|)|�=$ &a& (4.36)

for any a # Aloc . We decompose 0|$ as

0|$=d0|+0" with (0", 0|)=0 (4.37)
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where d is a complex number. Taking the orthogonal projection onto 0|

and the orthogonal projection onto 0" as observables for18 (4.36), we
obtain

1&|d |2�=$, &0"&2�=$ (4.38)

Substituting these inequalities and the decomposition (4.37) into (4.31), we
have

|d*(0| , ?|(U� (l)
\, 1) 0|)&1|�=+- =$ (4.39)

This inequality contradicts (4.30). Thus the norm of 5 is non-vanishing in
the limit l � �.

Next we show that the vector 5 gives a low energy excitation. Note
that

(8� 4 , [U� (l)
\, 1]* [H� 4, +(nmax), U� (l)

\, 1] 8� 4)

=:
N

|:N |2 (8� (N )
4 , [U� (l)

\, 1]* [H� 4, +(nmax), U� (l)
\, 1] 8� (N )

4 )

=:
N

|:N |2 (8� (N )
4 , [U� (l)

\, 1]* [H� 4(nmax), U� (l)
\, 1] 8� (N )

4 )

=:
N

|:N |2 [(8� (N )
4 , [U� (l)

\, 1]* H� 4(nmax) U� (l)
\, 1 8� (N )

4 )

&(8� (N )
4 , H� 4(nmax) 8� (N )

4 )] (4.40)

Combining this with the definition (4.7) of 2E (N )
Ly

, we have

1
2 (8� 4 , [U� (l)

+, 1]* [H� 4, +(nmax), U� (l)
+, 1] 8� 4)

+ 1
2 (8� 4 , [U� (l)

&, 1]* [H� 4, +(nmax), U� (l)
&, 1] 8� 4)

=:
N

|:N |2 2E (N )
Ly

(4.41)

Further, by using Lemma 4.1 we obtain the following: For any given small
=>0, there exists l such that

=� lim
4 A Z

|([U� (l)
\, 1]* [H� 4, +(nmax), U� (l)

\, 1])

=(0| , [?|(U� (l)
\, 1)]* H| ?|(U� (l)

\, 1) 0|) (4.42)
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This implies the existence of a gapless excitation above the ground state |,
with the above result about the vector 5. Since there is no gapless excita-
tion above |, the assumption that all the infinite-volume ground states are
translationally invariant with the period 1, is not valid. Namely a transla-
tional symmery breaking occurs. K

Proof of Theorem 2.5. Since the proof is very similar to that of
Theorem 2.4, we roughly sketch it.

Let | be a translationally invariant pure ground state with a period
q # N and with a non-zero excitation gap. Assuming q& � N, we find a con-
tradiction. In the same way as in the proof of Theorem 2.4, we have

0= lim
l � �

|(U� (l)
\, q)= lim

l � �
(0| , ?(U� (l)

\, q) 0|) (4.43)

Let 5=(1&G) ?|(U� (l)
\, q) 0| . Then the norm of the vector 5 is non-

vanishing in the limit l � � again. Further we have

(0| , [?|(U� (l)
\, q)]* H| ?|(U� (l)

\, q) 0|)�= (4.44)

for large l. Thus there exists a gapless excitation above the ground state |.
Since | has a gap, the assumption q& � N is not valid. Namely q& # N. K

5. ORTHOGONALITY��PROOF OF PROPOSITION 4.2

In order to prove Proposition 4.2, we first study the properties of the
vectors 8 (N )

Ly
and 9 (N )

\, Ly
=U (l)

\, q8 (N )
Ly

for the action of T (N, y)(q 2y). Note
that

T (N, y)(q 2y) 8 (N )
Ly

= :
[!j ]

a([!j ]) T (N, y)(q 2y) Asym[,P
!1

� } } } �,P
!N

]

= :
[!j ]

a([!j ]) Asym[,P
!$1

� } } } �,P
!$N

]

= :
[!j ]

a([!j"]) Asym[,P
!1

� } } } �,P
!N

] (5.1)

where !$j=(nj , kj+q 2k) and !j"=(nj , kj&q 2k) with !j=(nj , k j ) and
2k=2?�Lx . Since 8 (N )

Ly
is an eigenvector of T (N, y)(q 2y) with the eigen-

value exp[i2?n�M] with an integer n, we have

a([!j"])=a([! j ]) exp[i2?n�M] (5.2)

345Spectral Gaps of Quantum Hall Systems with Interactions



Using the definition (4.4) of U (l)
\, q , we have

T (N, y)(q 2y) 9 (N )
\, Ly

= :
[!j ]

a([!j ]) exp _\i2? :
N

j=1

m~ (m j )�l& Asym[,P
!$1

� } } } �,P
!$N

]

= :
[!j ]

a([!j ]) exp _\i2? :
N

j=1

m~ (m$j )�l& exp _�i2? :
ql

s=1

n̂s �l&
_Asym[,P

!$1
� } } } �,P

!$N
]

= :
[!j ]

a([!j"]) exp _\i2? :
N

j=1

m~ (mj )�l& exp _�i2? :
q(l&1)

s=&q+1

n̂s �l&
_Asym[,P

!1
� } } } �,P

!N
]

=e2?in�M :
[!j ]

a([!j ]) exp _\i2? :
N

j=1

m~ (mj )
l & exp _�i2? :

q(l&1)

s=&q+1

n̂s

l &
_Asym[,P

!1
� } } } �,P

!N
]

=e2?in�M exp _�i
2?
l

:
q(l&1)

s=&q+1

n̂s& 9 (N )
\ (5.3)

where kj=2?mj �Lx , k$j=2?m$j �Lx , and we have used the relation (5.2).

Proof of Proposition 4.2. Following Tasaki, (30) we prove the state-
ment. From (5.3), one has

(8 (N )
Ly

, 9 (N )
\, Ly

)

=(T (N, y)(q 2y) 8 (N )
Ly

, T (N, y)(q 2y) 9 (N )
\, Ly

)

=�8 (N )
Ly

, exp _�i
2?
l

:
q(l&1)

s=&q+1

n̂s& 9 (N )
\, Ly�

=e�i2?q&(8 (N )
Ly

, 9 (N )
\, Ly

)

+�8 (N )
Ly

, \exp _�i
2?
l

:
q(l&1)

s=&q+1

n̂s&&e�i2?q&+ 9 (N )
\, Ly� (5.4)

Using the Schwarz inequality, the second term in the last line is evaluated
as
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} �8 (N )
Ly

, \exp _�i
2?
l

:
q(l&1)

s=&q+1

n̂s&&e�i2?q&+ 9 (N )
\, Ly� }

2

�4 �8 (N )
Ly

, sin2 _? \1
l

:
q(l&1)

s=&q+1

n̂s&q&+& 8 (N )
Ly �

�4?2 �8 (N )
Ly

, \1
l

:
q(l&1)

s=&q+1

n̂s&q&+
2

8 (N )
Ly �

=4?2 _ 1
l2 :

s, t

(8 (N )
Ly

, n̂s n̂t8 (N )
Ly

) &(q&)2& (5.5)

Here, for getting the last equality we have used the identity

1
q

:
j+q

s= j+1

(8 (N )
Ly

, n̂s8 (N )
Ly

)=& for any lattice site j (5.6)

This is a consequence of the translational invariance of the state
(8 (N )

Ly
, ( } } } ) 8 (N )

Ly
) for the action T (N, y)(q 2y). From (5.4) ad (5.5), one

can show

sin2(?q&) ||(U (l)
\, 1)|2�?2 _ 1

l2 :
s, t

|(n̂s n̂t)&(q&)2& (5.7)

This right-hand side is nothing but the long range charge correlation which
is vanishing in the limit l � � by the assumption (4.15). Therefore the
statement of Proposition 4.2 has been proved. K

6. ESTIMATE OF THE ENERGY GAP

In this section, we prove Lemma 4.1. For simplicity, we write 2E (N ) by
dropping the subscript Ly of 2E (N )

Ly
of (4.7).

From the definition (4.7) of 2E (N ), we have

2E (N )=' (N )
Ly

(H (N )
Ly

(nmax))&| (N )
Ly

(H (N )
Ly

(nmax))=2E (N )
W +2E (N )

U (6.1)

with

2E (N )
W = :

N

j=1

[' (N )
Ly

(W(x j ))&| (N )
Ly

(W(xj ))] (6.2)
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and

2E (N )
U =' (N )

Ly
(U (N ))&| (N )

Ly
(U (N )) (6.3)

In the following, we will estimate only 2E (N )
U because 2E (N )

W can be treated
in a much easier way.

To begin with, we note that

2E (N )
U = :

[!j ], [!$j ]

a*([!j ]) a([!$j ])

_1
2 _`

N

j=1

ei2?(m~ (m$j)&m~ (mj))�l+ `
N

j=1

e&i2?(m~ (m$j)&m~ (mj))�l&2&
_(Asym[,P

!1
� } } } �,P

!N
], U (N )Asym[,P

!$1
� } } } �,P

!$N
]) (6.4)

Here we notice that the contribution from [!j ]=[!$j ] is vanishing, and
that the matrix element for U (N ) is vanishing if [! j ], [!$j ] differ by more
than two pairs of single-body functions. Therefore 2E (N )

U can be written as

2E (N )
U =2E (N )

I +2E (N )
I (6.5)

in terms of the two types of contributions, [!j ], [!$j ] differing by one pair
of functions,

2E (N )
I = :

[!j ]

:
N

s=1

:
!$s

a*([!j ]) a([!1 ,..., !$s ,..., !N])

_{cos _2?
l

(m~ (m$s)&m~ (ms))&&1=
_(Asym[,P

!1
� } } } �,P

!N
],

U (N ) Asym[,P
!1

� } } } �,P
!$s

� } } } �,P
!N

]) (6.6)

and [!j ], [!$j ] differing by two pairs of functions,

2E (N )
II = 1

4 :
[!j ]

:
N

s=1

:
t{s

:
!$s

:
!$t

a*([!j ]) a([!1 ,..., !$s ,..., !$t ,..., !N])

_{cos _2?
l

(m~ (m$s)&m~ (ms)+m~ (m$t)&m~ (mt))&&1=
_(Asym[,P

!1
� } } } �,P

!N
],

U (N ) Asym[,P
!1

� } } } �,P
!$s

� } } } �,P
!$t

� } } } �,P
!N

]) (6.7)
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6.1. Estimate of 2E (N )
I

We first treat 2E (N )
I , and we will estimate 2E (N )

II in Section 6.2.
To begin with, we decompose 2E (N )

I into the following two parts:

2E (N )
I, <= :

[!j ]

:
N

s=1

:
!$s

a*([!j ]) a([!$j ]) /(dist(m)(ms , m$s)<l$�2)

_{cos _2?
l

(m~ (m$s)&m~ (ms))&&1=
_(Asym[,P

!1
� } } } �,P

!N
],

U (N ) Asym[,P
!1

� } } } �,P
!$s

� } } } �,P
!N

]) (6.8)

and

2E (N )
I, �= :

[!j ]

:
N

s=1

:
!$s

a*([!j ]) a([!$j ]) /(dist(m)(ms , m$s)�l$�2)

_{cos _2?
l

(m~ (m$s)&m~ (ms))&&1=
_(Asym[,P

!1
� } } } �,P

!N
],

U (N ) Asym[,P
!1

� } } } �,P
!$s

� } } } �,P
!N

]) (6.9)

where $ # (0, 1�4), and / is the characteristic function given by

/(Q)={1
0,

if Q is true
otherwise

(6.10)

and

dist(m)(ms , m$s) :=min
n # Z

[ |ms&m$s&nM |] (6.11)

Here we have written [!$j ]=[!1 , !2 ,..., !s&1 , !$s , !s+1 ,..., !N]. In the
following, we fix $ to a number in the interval.

6.1.1. Estimate of 2E (N )
I, < . As we will show in the following, we

have a bound

|2E (N )
I, < |�2?2qC(1)(U (2))(nmax+1)3 l3$

l
(6.12)
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where C(1)(U (2)) is a positive constant which depends only on19 the inter-
action U (2). Clearly 2E (N )

I, < is vanishing in the limit l � � because
$ # (0, 1�4).

In order to show the bound, we first evaluate the matrix element of
U (N ) in (6.8) as

|(Asym[,P
!1

� } } } �,P
!N

], U (N ) Asym[,P
!1

� } } } �,P
!$s

� } } } �,P
!N

]) |

� } :
! # [!j ]

|
S

dx1 dy1 |
S

dx2 dy2 ,P*
!s

(r1) ,P*
! (r2)

_U (2)(x1&x2 , y1& y2) ,P
!$s

(r1) ,P
! (r2) }

+ } :
! # [!j ]

|
S

dx1 dy1 |
S

dx2 dy2 ,P*
!s

(r1) ,P*
! (r2)

_U (2)(x1&x2 , y1& y2) ,P
! (r1) ,P

!$s
(r2) } (6.13)

Lemma 6.1. The following inequality is valid:

:
[!=(n, k) | n�nmax]

|
S

dx dy |,P
! (r)|2 |U (2)(x&x$, y& y$)|

�C(1)(U (2))(nmax+1) for any x$, y$ (6.14)

where C(1)(U (2)) is the same constant as in (6.12).

The proof is given in Appendix B. Using Lemma 6.1, we have

} :
! # [!j ]

| dx1 dy1 | dx2 dy2 ,P*
!s

(r1) ,P*
! (r2)

_U (2)(x1&x2 , y1& y2) ,P
!$s

(r1) ,P
! (r2) }

�C(1)(U (2))(nmax+1) |
S

dx dy |,P
!s

(r)| |,P
!$s

(r)| (6.15)

for the first term in the right-hand side of (6.13). Here we have replaced the
sum about [!j ] with the sum about the whole ! for getting the bound.
From this bound, we obtain
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|a*([!j ]) a([!$j ])|

_} :
! # [!j ]

| dx1 dy1 | dx2 dy2 ,P*
!s

(r1) ,P*
! (r2)

_U (2)(x1&x2 , y1& y2) ,P
!$s

(r1) ,P
! (r2) }

� 1
2C(1)(U (2))(nmax+1) _ |a([! j ])|2 |

S
dx dy |,P

!s
(r)|2

+|a([!$j ])|2 |
S

dx dy |,P
!$s

(r)| 2&
= 1

2C(1)(U (2))(nmax+1)[|a([! j ])| 2+|a([!$j ])|2] (6.16)

On the other hand, the second term in the right-hand side of (6.13) is
evaluated as

} | dx1 dy1 | dx2 dy2 ,P*
!s

(r1) ,P*
! (r2) U (2)(x1&x2 , y1& y2) ,P

! (r1) ,P
!$s

(r2) }
��| dx1 dy1 | dx2 dy2 |,P

!s
(r1)|2 |U (2)(x1&x2 , y1& y2)| |,P

! (r2)|2

_�| dx1 dy1 | dx2 dy2 |,P
!$s

(r1)|2 |U (2)(x1&x2 , y1& y2)| |,P
! (r2)|2

(6.17)

by using the Schwarz inequality. In the same way as in (6.16), we obtain

|a*([!j ]) a([!$j ])| } | dx1 dy1 | dx2 dy2 ,P*
!s

(r1) ,P*
! (r2)

_U (2)(x1&x2 , y1& y2) ,P
! (r1) ,P

!$s
(r2) }

� 1
2 |a*([!j ])| 2 | dx1 dy1 | dx2 dy2 |,P

!s
(r1)|2

_|U (2)(x1&x2 , y1& y2)| |,P
! (r2)|2

+ 1
2 |a*([!$j ])| 2 | dx1 dy1 | dx2 dy2 |,P

!$s
(r1)|2

_|U (2)(x1&x2 , y1& y2)| |,P
! (r2)|2 (6.18)
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Taking the sum over ! # [!j ] and using Lemma 6.1 in the same way, we
have

|a*([!j ]) a([!$j ])|

_}:! | dx1 dy1 | dx2 dy2 ,P*
!s

(r1) ,P*
! (r2)

_U (2)(x1&x2 , y1& y2) ,P
! (r1) ,P

!$s
(r2) }

� 1
2C(1)(U (2))(nmax+1)[|a*([!j ])| 2+|a*([!$j ])| 2] (6.19)

Combining (6.13), (6.16) and (6.19), we obtain

|a*([!j ]) a([!$j ])(Asym[,P
!1

� } } } �,P
!N

], U (N )

_Asym[,P
!1

� } } } �,P
!$s

� } } } �,P
!N

]) |

�C(1)(U (2))(nmax+1)[|a([!j ])|2+|a([!$j ])| 2] (6.20)

By using this inequality, 2E (N )
I, < of (6.8) is evaluated as

|2E (N )
I, < |�2C(1)(U (2))(nmax+1) :

[!j ]

:
N

s=1

:
!$s

/(dist(m)(ms , m$s)<l$�2)

_{1&cos _2?
l

(m~ (m$s)&m~ (ms))&= |a([!j ])|2 (6.21)

Note that

1&cos _2?
l

(m~ (m$s)&m~ (ms))&
={1&cos _2?

l
(m~ (m$s)&m~ (ms))&=

_[/(1�ms�ql)+[1&/(1�ms�ql)] /(1�m$s�ql)] (6.22)

from the definition (4.5) of m~ ( } } } ). Using this identity, we have

|2E (N )
I, < |�2C(1)(U (2))(nmax+1)

_ :
[!j ]

:
N

s=1

:
!$s

[/(1�ms�ql)

+[1&/(1�ms�ql)] /(1�m$s�ql)]
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_/(dist(m)(ms , m$s)<l$�2) {1&cos _2?
l

(m~ (m$s)&m~ (ms))&=
_|a([!j ])| 2

�C(1)(U (2))(nmax+1)

_ :
[!j ]

:
N

s=1

:
!$s

[/(1�ms�ql)

+[1&/(1�ms�ql)] /(1�m$s�ql)]

_/(dist(m)(ms , m$s)<l$�2) |a([!j ])|2 ?2l2$

l2 (6.23)

Note that

:
[!j ]

:
N

s=1

:
!$s

/(1�ms�ql) /(dist(m)(ms , m$s)<l$�2) |a([!j ])|2

� :
[!j ]

:
N

s=1

/(1�ms�ql)(nmax+1) l$ |a([! j ])|2

� :
[!j ]

(nmax+1)2 qll$ |a([!j ])|2=(nmax+1)2 qll$ (6.24)

and

:
[!j ]

:
N

s=1

:
!$s

[1&/(1�ms�ql)] /(1�m$s�ql)

_/(dist(m)(ms , m$s)<l$�2) |a([!j ])| 2

� :
[!j ]

:
N

s=1

:
!$s

/(&l$�2+1�ms�0 or ql+1�ms�ql+l$�2&1)

_/(dist(m)(ms , m$s)<l$�2) |a([!j ])| 2

� :
[!j ]

:
N

s=1

/(&l$�2+1�ms�0 or ql+1�ms�ql+l$�2&1)

_(nmax+1) l$ |a([!j ])|2

� :
[!j ]

(nmax+1)2 l2$ |a([!j ])| 2=(nmax+1)2 l2$ (6.25)
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Substituting these into (6.23), we obtain

|2E (N )
I, < |�?2C(1)(U (2))(nmax+1)3 \ql3$

l
+

l4$

l2 +
�2?2qC(1)(U (2))(nmax+1)3 l3$

l
(6.26)

6.1.2. Estimate of 2E (N )
I, � . The main results in this subsection are

summarized in Lemma 6.2 below. The results include important informa-
tion about the cutoff dependence of the size $y of the local perturbation in
the y direction.

For proceeding to this lemma, we make preparations. Using (6.13),
Lemma 6.1 and (6.22) in the same way as in the preceding Section 6.1.1, we
can evaluate 2E (N )

I, � of (6.9) as

|2E (N )
I, � |�2C(1)(U (2))(nmax+1) 2E (N )

I, �, 1+22E (N )
I, �, 2 (6.27)

where

2E (N )
I, �, 1= :

[!j ]

:
N

s=1

:
!$s

[ |a([!j ])|2+|a([!$j ])|2] /(1�ms�ql)

_/(dist(m)(ms , m$s)�l$�2) |
S

dx dy |,P
!$s

(r)| |,P
!s

(r)| (6.28)

and

2E (N )
I, �, 2= :

[!j ]

:
N

s=1

:
!$s

[|a([!j ])| 2+|a([!$j ])|2]

_/(1�ms�ql) /(dist(m)(ms , m$s)�l$�2)

_ :
! # [!j ]

| dx1 dy1 | dx2 dy2 |,P
!s

(r1)| |,P
! (r1)|

_|U (2)(x1&x2 , y1& y2)| |,P
!$s

(r2)| |,P
! (r2)| (6.29)

Lemma 6.2. Suppose that ?(l$�4&1) lB �Lx>nmax and Ly>
32nmaxlB . Then the following two bounds are valid:

2E (N )
I, �, 1�2(nmax+1) ql=(1)(l$�2&1, nmax , Lx , Ly) (6.30)
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and

2E (N )
I, �, 2�4 &U (2)&� (nmax+1) ql=(1)(l$�4&1, nmax , Lx , Ly)

_[2(nmax+1) l$+= (1)(l$&1, nmax , Lx , Ly)] (6.31)

where

=(1)(2l, nmax , Lx , Ly)

:=C(2)(nmax)
Lx

lB
exp _&\?lB

Lx
2l&nmax)+

2

&
+C(3)(nmax)

LxLy

l2
B

exp _&
L2

y

32l2
B \1&

32nmax lB

Ly +
2

& (6.32)

Here the constants C(2)(nmax) and C(3)(nmax) depend on the energy cutoff
nmax only.

Immediately, we have

lim
l � �

lim
Ly � �

2E (N )
I, �, 1=0, lim

l � �
lim

Ly � �
2E (N )

I, �, 2=0 (6.33)

for a fixed Lx . Clearly these with (6.27) yield

lim
l � �

lim
Ly � �

2E (N )
I, �=0 (6.34)

for a fixed Lx . We remark that the size $y of the local perturbation in the
y direction strongly depends on the width Lx of the strip and the energy
cutoff nmax . To see this, we note that the size $y is given by $y=l 2y,
where 2y is the lattice constant given by (3.13). From the lemma, the
number l must at least satisfy lBl$

tLxnmax . Then we have

$y B (Lx)1�$&1 (nmax)1�$=(Lx)3+= (nmax)4+= (6.35)

where we have taken = to be a small positive number by using $ # (0, 1�4).
This cutoff dependence is not a desired one. We believe that the size $y
does not depend on Lx , nmax in much better evaluation for the low energy
excitations.
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First let us show the bound (6.30). We can rewrite 2E (N )
I, �, 1 as

2E (N )
I, �, 1= :

[!j ]

:
N

s=1

/(1�ms�ql) |a([! j ])|2

_:
!$s

/(dist(m)(ms , m$s)�l$�2) |
S

dx dy |,P
!$s

(r)| |,P
!s

(r)|

+ :
[!$j ]

|a([!$j ])| 2 :
N

s=1

:
!s

/(1�ms�ql)

_/(dist(m)(ms , m$s)�l$�2) |
S

dx dy |,P
!$s

(r)| |,P
!s

(r)| (6.36)

Note that

:
N

s=1

:
!s

/(1�ms�ql) /(dist(m)(ms , m$s)�l$�2) |
S

dx dy |,P
!$s

(r)| |,P
!s

(r)|

�:
!

/(1�m�ql) :
N

s=1

/(dist(m)(m, m$s)�l$�2) |
S

dx dy |,P
!$s

(r)| |,P
! (r)|

(6.37)

where the first sum in the right-hand side is taken over all the states
!=(n, k) with k=2?m�Lx .

We note that the Hermite polynomial Hn in the functions ,P
n, k satisfies

|Hn(`)|�cn e ;n |`| for ` # R (6.38)

where the positive constants cn and ;n depend only on the number n. The
well-known values are given by

cn={(n&1)!!
n!!

for n=even
for n=odd

(6.39)

and

;n={- 2n
- 2(n&1)

for n=even
for n=odd

(6.40)

Here (2n&1)!!=(2n&1)(2n&3) } } } 3 } 1 with (&1)!!=1. Using the bound
(6.38), we can get the following lemma:
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Lemma 6.3. Let ,P
! be an eigenvector (3.17) of the Hamiltonian

(3.1) with the periodic boundary conditions (3.9) and with quantum
numbers !=(n, k)=(n, 2?m�Lx), and let ?(2l&1) lB�Lx>nmax and Ly>
32nmaxlB . Then the following bound is valid:

:
!$

/(dist(m)(m, m$)�2l) |
S

dx dy |,P
! (r)| |,P

!$(r)|�=(1)(2l&1, nmax , Lx , Ly)

(6.41)

where the sum is over all the states !$=(n$, k$) with k$=2?m$�Lx , and =(1)

is given by (6.32).

The proof is given in Appendix C. Combining (6.36), (6.37) and
Lemma 6.3, we obtain the desired bound (6.30).

Next consider 2E (N )
I, �, 2 of (6.29), and we shall show the bound (6.31).

Using the inequality

/ \dist(m)(ms , m$s)�
l$

2 +
�/ \dist(m)(ms , m)�

l$

4 ++/ \dist(m)(m$s , m)�
l$

4 + (6.42)

we have

2E (N )
I, �, 2�&U (2)&� :

4

i=1

2E (N )
I, �, 2, i (6.43)

where

2E (N )
I, �, 2, 1= :

[!j ]

:
N

s=1

|a([!j ])|2 /(1�ms�ql)

_:
!

/(dist(m)(ms , m)�l$�4) | dx1 dy1 |,P
!s

(r1)| |,P
! (r1)|

_:
!$s

| dx2 dy2 |,P
!$s

(r2)| |,P
! (r2)| (6.44)
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2E (N )
I, �, 2, 2= :

[!j ]

:
N

s=1

|a([!j ])|2 /(1�ms�ql)

_:
!
| dx1 dy1 |,P

!s
(r1)| |,P

! (r1)|

_:
!$s

/(dist (m)(m$s , m)�l$�4) | dx2 dy2 |,P
!$s

(r2)| |,P
! (r2)|

(6.45)

2E (N )
I, �, 2, 3= :

[!$j ]

|a([!$j ])|2 :
!"

/(1�m"�ql)

_:
!

/(dist(m)(m", m)�l$�4) | dx1 dy1 |,P
!"(r1)| |,P

! (r1)|

_ :
N

s=1
| dx2 dy2 |,P

!$s
(r2)| |,P

! (r2)| (6.46)

and

2E (N )
I, �, 2, 4= :

[!$j ]

|a([!$j ])|2 :
!"

/(1�m"�ql)

_:
!
| dx1 dy1 |,P

!"(r1)| |,P
! (r1)|

_ :
N

s=1

/(dist (m)(m$s , m)�l$�4) | dx2 dy2 |,P
!$s

(r2)| |,P
! (r2)|

(6.47)

We note that, from Lemma 6.3,

:
!$

|
S

dx dy |,P
!$(r)| |,P

! (r)|

=:
!$

[/(dist(m)(m, m$)<l$)+/(dist(m)(m, m$)�l$)]

_|
S

dx dy |,P
!$(r)| |,P

! (r)|

�2(nmax+1) l$+=(1)(l$&1, nmax , Lx , Ly) (6.48)
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Using this inequality and Lemma 6.3 again, we obtain

2E (N )
I, �, 2, i�(nmax+1) ql=(1)(l$�4&1, nmax , Lx , Ly)

_[2(nmax+1) l$+=(1)(l$&1, nmax , Lx , Ly)] (6.49)

for i=1, 2, 3, 4. Substituting these into (6.43), we get the desired bound
(6.31).

6.2. Estimate of 2E (N )
II

For 2E (N )
II of (6.7), one can easily obtain

|2E (N )
II |�

1
2

:
[!j ]

:
N

s=1

:
t{s

:
!$s

:
!$t

|a*([!j ]) a([! j"])|

_{1&cos _2?
l

(m~ (m$s)&m~ (ms)+m~ (m$t)&m~ (mt))&=
_}| dx1 dy1 | dx2 dy2 ,P*!s

(r1) ,P*!t
(r2)

_U (2)(x1&x2 , y1& y2) ,P
!$s

(r1) ,P
!$t

(r2)} (6.50)

where we have written

[!j"]=[!1 ,..., !s&1 , !$s , !s+1 ,..., !t&1 , !$t , !t+1 ,..., !N] (6.51)

The right-hand side of (6.50) can be decomposed into the following two
parts:

2E� (N )
II, < =

1
2

:
[!j ]

:
N

s=1

:
t{s

:
!$s

:
!$t

|a*([!j ]) a([!j"])|

_{1&cos _2?
l

(m~ (m$s)&m~ (ms)+m~ (m$t)&m~ (mt))&=
_/(dist(m)(ms , m$s)<l$�2) /(dist(m)(mt , m$t)<l$�2)

_}| dx1 dy1 | dx2 dy2 ,P*!s
(r1) ,P*!t

(r2)

_U (2)(x1&x2 , y1& y2) ,P
!$s

(r1) ,P
!$t

(r2)} (6.52)
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and

2E� (N )
II, >=

1
2

:
[!j ]

:
N

s=1

:
t{s

:
!$s

:
!$t

|a*([!j ]) a([!j"])|

_{1&cos _2?
l

(m~ (m$s)&m~ (ms)+m~ (m$t)&m~ (mt))&=
_[1&/(dist(m)(ms , m$s)<l$�2) /(dist(m)(mt , m$t)<l$�2)]

_}| dx1 dy1 | dx2 dy2 ,P*!s
(r1) ,P*!t

(r2)

_U (2)(x1&x2 , y1& y2) ,P
!$s

(r1) ,P
!$t

(r2) } (6.53)

6.2.1. Estimate of 2E� (N )
II, < . As we will show in the following, we

obtain

2E� (N )
II, < �4?2q(nmax+1)4 C(1)(U (2))

l4$

l
(6.54)

for 2E� (N )
II, < of (6.52). Since $ # (0, 1�4), 2E� (N )

II, < is vanishing in the limit
l � �.

In order to show the bound (6.54), consider first the integral in the
right-hand side of (6.52). Using the Schwarz inequality, we have

}| dx1 dy1 | dx2 dy2 ,P*!s
(r1) ,P*!t

(r2) U (2)(x1&x2 , y1& y2) ,P
!$s

(r1) ,P
!$t

(r2)}
��| dx1 dy1 | dx2 dy2 |,P

!s
(r1)|2 |U (2)(x1&x2 , y1& y2)| |,P

!t
(r2)| 2

_�| dx1 dy1 | dx2 dy2 |,P
!$s

(r1)|2 |U (2)(x1&x2 , y1& y2)| |,P
!$t

(r2)|2

(6.55)

Thereby

}a*([!j ]) a([!j"]) | dx1 dy1 | dx2 d2 ,P*!s
(r1)

_,P*!t
(r2) U (2)(x1&x2 , y1& y2) ,P

!$s
(r1) ,P

!$t
(r2) }
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� 1
2 _ |a([!j ])|2 | dx1 dy1 | dx2 d2 |,P

!s
(r1)|2

_|U (2)(x1&x2 , y1& y2)| |,P
!t

(r2)|2

+|a([!j"])| 2 | dx1 dy1 | dx2 d2 |,P
!$s

(r1)| 2

_|U (2)(x1&x2 , y1& y2)| |,P
!$t

(r2)|2& (6.56)

Substituting this into (6.52), we get

2E� (N )
II, <�

1
2

:
[!j ]

:
N

s=1

:
t{s

:
!$s

:
!$t

|a([!j ])| 2

_{1&cos _2?
l

(m~ (m$s)&m~ (ms)+m~ (m$t)&m~ (mt))&=
_/(dist(m)(ms , m$s)<l$�2) /(dist(m)(mt , m$t)<l$�2)

_| dx1 dy1 | dx2 dy2 |,P
!s

(r1)| 2 |U (2)(x1&x2 , y1& y2)| |,P
!t

(r2)|2

(6.57)

Here, if all of ms , m$s , mt , m$t are not in the interval [1, ql], then the corre-
sponding contributions are vanishing from the definitions (4.5) of m~ ( } } } )
and the cosine function. From this observation, we have

2E� (N )
II, <�

1
2

:
[!j ]

:
N

s=1

:
t{s

:
!$s

:
!$t

|a([! j ])|2

_{1&cos _2?
l

(m~ (m$s)&m~ (ms)+m~ (m$t)&m~ (mt))&=
_/(dist(m)(ms , m$s)<l$�2) /(dist(m)(mt , m$t)<l$�2)

_[/(1�ms�ql)+[1&/(1�ms�ql)] /(1�mt�ql)

+[1&/(1�ms�ql)][1&/(1�mt�ql)]

_/(1�m$s�ql)

+[1&/(1�ms�ql)][1&/(1�mt�ql)]

_[1&/(1�m$s�ql)] /(1�m$t�ql)] | dx1 dy1 | dx2

_dy2 |,P
!s

(r1)|2 |U (2)(x1&x2 , y1& y2)| |,P
!t

(r2)| 2 (6.58)
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Note that

1
2

:
[!j ]

:
N

s=1

:
t{s

:
!$s

:
!$t

|a([!j ])| 2

_{1&cos _2?
l

(m~ (m$s)&m~ (ms)+m~ (m$t)&m~ (mt))&=
_/(dist(m)(ms , m$s)<l$�2) /(dist(m)(mt , m$t)<l$�2)

_/(1�ms�ql) | dx1 dy1 | dx2 dy2 |,P
!s

(r1)|2

_|U (2)(x1&x2 , y1& y2)| |,P
!t

(r2)|2

�?2 l2$

l2 :
[!j ]

:
N

s=1

:
t{s

:
!$s

:
!$t

|a([! j ])|2 /(dist(m)(ms , m$s)<l$�2)

_/(dist(m)(mt , m$t)<l$�2) /(1�ms�ql)

_| dx1 dy1 | dx2 dy2 |,P
!s

(r1)|2 |U (2)(x1&x2 , y1& y2)| |,P
!t

(r2)|2

�?2(nmax+1)2 l4$

l2 :
[!j ]

:
N

s=1

:
t{s

|a*([!j ])|2 /(1�ms�ql)

_| dx1 dy1 | dx2 dy2 |,P
!s

(r1)|2 |U (2)(x1&x2 , y1& y2)| |,P
!t

(r2)|2

�?2(nmax+1)3 C(1)(U (2))
l4$

l2 :
[!j ]

:
N

s=1

|a*([!j ])|2 /(1�ms�ql)

�?2q(nmax+1)4 C(1)(U (2))
l4$

l
(6.59)

where we have used Lemma 6.1 for getting the third inequality. Similarly
we have
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1
2

:
[!j ]

:
N

s=1

:
t{s

:
!$s

:
!$t

|a*([!j ])|2

_{1&cos _2?
l

(m~ (m$s)&m~ (ms)+m~ (m$t)&m~ (mt))&=
_/(dist(m)(ms , m$s)<l$�2) /(dist(m)(mt , m$t)<l$�2)

_[1&/(1�ms�ql)][1&/(1�mt�ql)] /(1�m$s�ql)

_| dx1 dy1 | dx2 dy2 |,P
!s

(r1)| 2 |U (2)(x1&x2 , y1& y2)| |,P
!t

(r2)|2

�?2 l2$

l2 :
[!j ]

:
N

s=1

:
t{s

:
!$s

:
!$t

|a*([!j ])|2 /(dist(m)(ms , m$s)<l$�2)

_/(dist(m)(mt , m$t)<l$�2)

_[1&/(1�ms�ql)][1&/(1�mt�ql)] /(1�m$s�ql)

_| dx1 dy1 | dx2 dy2 |,P
!s

(r1)| 2 |U (2)(x1&x2 , y1& y2)| |,P
!t

(r2)|2

�?2(nmax+1)
l3$

l2 :
[!j ]

:
N

s=1

:
t{s

:
!$s

|a*([!j ])|2 /(dist(m)(ms , m$s)<l$�2)

_[1&/(1�ms�ql)] /(1�m$s�ql)

_| dx1 dy1 | dx2 dy2 |,P
!s

(r1)| 2 |U (2)(x1&x2 , y1& y2)| |,P
!t

(r2)|2

�?2(nmax+1)2 C(1)(U (2))
l3$

l2 :
[!j ]

:
N

s=1

:
!$s

|a*([!j ])|2

_/(dist(m)(ms , m$s)<l$�2)[1&/(1�ms�l)] /(1�m$s�ql) (6.60)
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Note that

:
N

s=1

:
!$s

/(dist(m)(ms , m$s)<l$�2)[1&/(1�ms�l)] /(1�m$s�ql)

� :
N

s=1

:
!$s

[/(&l$�2+1<ms�0)+/(ql+1�ms<l$�2+ql)]

_[/(1�m$s<l$�2)+/(ql+1&l$�2<m$s�ql)]

�(nmax+1)2 l2$ (6.61)

Substituting this into (6.60), we get

1
2

:
[!j ]

:
N

s=1

:
t{s

:
!$s

:
!$t

|a*([!j ])|2

_{1&cos _2?
l

(m~ (m$s)&m~ (ms)+m~ (m$t)&m~ (mt))&=
_/(dist(m)(ms , m$s)<l$�2) /(dist(m)(mt , m$t)<l$�2)

_[1&/(1�ms�ql)][1&/(1�mt�ql)] /(1�m$s�ql)

_| dx1 dy1 | dx2 dy2 |,P
!s

(r1)|2 |U (2)(x1&x2 , y1& y2)| |,P
!t

(r2)|2

�?2(nmax+1)4 C(1)(U (2))
l5$

l2 (6.62)

Since the rest of the contributions of the right-hand side of (6.58) are
treated in the same way, we obtain the bound (6.54).

6.2.2. Estimate of 2E� (N )
II, > . Our goal in this subsection is to get

the following bound: For ?(l$�2&1)�Lx>nmax and Ly>32nmaxlB ,

2E� (N )
II, >�8(nmax+1) ql=(1)(l$�2&1, nmax , Lx , Ly) }(nmax , Lx , Ly) (6.63)

where

}(nmax , Lx , Ly) :={C(7)(nmax)+C(8)(nmax)
Lx

lB
+C(9)(nmax)

LxLy

l2
B

_exp _&
L2

y

32l2
B \1&

32nmaxlB

Ly +
2

&= C (10)(U (2)) (6.64)
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Here the constants C(7)(nmax), C(8)(nmax) and C9)(nmax) depend on the
energy cutoff nmax only, and the constant C (10)(U (2)) depends on the poten-
tial U (2) only. From (6.32) and (6.64), we have

lim
l � �

lim
Ly � �

2E� (N )
II, >=0 (6.65)

for a fixed Lx .
Using the definition (4.5) of m~ ( } } } ), we can evaluate 2E� (N )

II, > of (6.53)
as

2E� (N )
II, >�2 :

[!j ]

:
N

s=1

:
t{s

:
!$s

:
!$t

[|a([! j ])| 2+|a([! j"])| 2] /(1�ms�ql)

_[1&/(dist(m)(ms , m$s)<l$�2) /(dist(m)(mt , m$t)<l$�2)]

_} | dx1 dy1 | dx2 dy2 ,P*
!s

(r1) ,P*
!t

(r2)

_U (2)(x1&x2 , y1& y2) ,P
!$s

(r1) ,P
!$t

(r2) }
�2 :

4

i=1

2E� (N )
II, >, i (6.66)

in a similar way as in (6.58) in the preceding Section 6.2.1. Here

2E� (N )
II, >, 1 := :

[!j ]

:
N

s=1

:
t{s

:
!$s

:
!$t

|a([!j ])|2

_/(1�ms�ql) /(dist (m)(ms , m$s)�l$�2)

_| dx1 dy1 |,P
!s

(r1)| |,P
!$s

(r1)| | dx2 dy2

_|U (2)(x1&x2 , y1& y2)| |,P
!t

(r2)| |,P
!$t

(r2)| (6.67)

2E� (N )
II, >, 2 := :

[!j ]

:
N

s=1

:
t{s

:
!$s

:
!$t

|a([!j ])|2

_/(1�ms�ql) /(dist (m)(mt , m$t)�l$�2)

_| dx1 dy1 |,P
!s

(r1)| |,P
!$s

(r1)| | dx2 dy2

_|U (2)(x1&x2 , y1& y2)| |,P
!t

(r2)| |,P
!$t

(r2)| (6.68)
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2E� (N )
II, >, 3 := :

[!j ]

:
N

s=1

:
t{s

:
!$s

:
!$t

_|a([!j"])|2 /(1�ms�ql) /(dist(m)(ms , m$s)�l$�2)

_| dx1 dy1 |,P
!s

(r1)| |,P
!$s

(r1)| | dx2 dy2 |

_U (2)(x1&x2 , y1& y2)| |,P
!t

(r2)| |,P
!$t

(r2)| (6.69)

and

2E� (N )
II, >, 4 := :

[!j ]

:
N

s=1

:
t{s

:
!$s

:
!$t

|a([!j"])|2

_/(1�ms�ql) /(dist (m)(mt , m$t)�l$�2)

_| dx1 dy1 |,P
!s

(r1)| |,P
!$s

(r1)| | dx2 dy2

_|U (2)(x1&x2 , y1& y2)| |,P
!t

(r2)| |,P
!$t

(r2)| (6.70)

and we have used

1&/(dist(m)(ms , m$s)<l$�2) /(dist(m)(mt , m$t)<l$�2)

�/(dist(m)(ms , m$s)�l$�2)+/(dist(m)(mt , m$t)�l$�2) (6.71)

Consider first 2E� (N )
II, >, 1 . It can be written as

2E� (N )
II, >, 1= :

[!j ]

|a([! j ])| 2 :
N

s=1

/(1�ms�ql)

_:
!$s

/(dist(m)(ms , m$s)�l$�2) | dx1 dy1 |,P
!s

(r1)| |,P
!$s

(r1)|

_ :
t{s

:
!$t

| dx2 dy2 |U (2)(x2&x1 , y2& y1)| |,P
!t

(r2)| |,P
!$t

(r2)|

(6.72)

In order to evaluate the last two sums, we use the following lemma:

Lemma 6.4. Let Ly>32nmaxlB . Then

:
!

:
!$

|
S

dx dy |U (2)(x&x$, y& y$)| |,P
! (x, y)| |,P

!$(x, y)|�}(nmax , Lx , Ly)

(6.73)

for all x$, y$ # R. Here } is given by (6.64).
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The proof is given in Appendix E. Using this Lemma 6.4, (6.72) and
Lemma 6.3, we get

2E� (N )
II, >, 1� :

[!j ]

|a([! j ])|2 :
N

s=1

/(1�ms�ql)

_=(1)(l$�2&1, nmax , Lx , Ly) }(nmax , Lx , Ly)

�(nmax+1) ql=(1)(l$�2&1, nmax , Lx , Ly) }(nmax , Lx , Ly) (6.74)

for l satisfying ?(l$�2&1) lB�Lx>nmax .
Next consider 2E� (N )

II, >, 3 . One can easily get

2E� (N )
II, >, 3= :

[!j"]

:
N

s=1

:
t{s

:
!s

:
!t

|a([!j"])|2

_/(1�ms�ql) /(dist(m)(ms , m$s)�l$�2)

_| dx1 dy1 |,P
!s

(r1)| |,P
!$s

(r1)|

_| dx2 dy2 |U (2)(x1&x2 , y1& y2)| |,P
!t

(r2)| |,P
!$t

(r2)|

� :
[!j"]

|a([!j"])|2 :
!

/(1�m�ql)

_ :
N

s=1

/(dist(m)(m, m$s)�l$�2) | dx1 dy1 |,P
! (r1)| |,P

!$s
(r1)|

_ :
N

t=1

:
!t

| dx2 dy2 |U (2)(x2&x1 , y2& y1)| |,P
!t

(r2)| |,P
!$t

(r2)|

(6.75)

Here the sum about ! is over all the states !=(n, k)=(n, 2?m�Lx) with the
Landau index n�nmax . Therefore 2E� (N )

II, >, 3 can be treated in the same way
as 2E� (N )

II, >, 1 . Moreover the rest 2E� (N )
II, >, 2 and 2E� (N )

II, >, 4 also can be treated
in the same way. In a consequence, we obtain the desired bound (6.63)
from (6.66) and (6.74).

APPENDIX A. PROOF OF THEOREM 2.1

Following Matsui, we sketch the proof of Theorem 2.1. For the detail,
see ref. 26.
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Let 4 be a one-dimensional finite lattice, i.e., 4/Z. For simplicity, we
assume |4|=qL with positive integers q, L. Then there exists a self-adjoint
operator h� (q)

0 , i.e., a local Hamiltonian, such that the Hamiltonian (2.28)
can be written as

H� 4(nmax)= :
L&1

m=0

h� (q)
qm (A.1)

in terms of the translate h� (q)
x :={ ( y)

x (h� (q)
0 ) of the local Hamiltonian, with the

periodic boundary conditions. We introduce a number operator of electron
on q lattice sites as

n~ (q)
x := :

nmax

n=0

:
q

m=1

n~ n, x+m (A.2)

Here n~ n, m is given by (2.38). Thereby the Hamiltonian (2.37) with a chemi-
cal potential + is written as

H� 4, +(nmax)= :
L&1

m=0

[h� (q)
qm&+n~ (q)

qm] (A.3)

To begin with, we recall the following two theorems:

Theorem A.1. Let | be a translationally invariant state with a
period q. Then the following two conditions for the grand-canonical
emsemble with a chemical potential + are equivalent:

v | is a ground state for Aloc .

v | minimizes the local energy in the sense that

|(h� (q)
x &+n~ (q)

x )=inf �(h� (q)
x &+n~ (q)

x ) (A.4)

where the inf is taken over all the translationally invariant states.

Theorem A.2. Let | be a translationally invariant state with a
period q and with the local density |(n~ (q)

x )=\. Then the following two
conditions for the canonical emsemble are equivalent:

v | is a ground state for AU(1)
loc .

v | minimizes the local energy in the sense that

|(h� (q)
x )=inf �(h� (q)

x ) (A.5)
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where the inf is taken over all the translationally invariant states with the
local density �(n~ (q)

x )=\.

In order to show these statements, one has only to estimate energy
effects due to boundary conditions, by relying on the Bratteli�Kishimoto�
Robinson theorem.(31) See, for example, ref. 26. See also refs. 22 and 27.

Lemma A.3. Let | be a translationally invariant ground state with
an electron density |(n~ (q)

x )=\ for AU(1)
loc . Suppose that, for Aloc , there

exists a translationally invariant ground state ' with the same electron den-
sity '(n~ (q)

x )=\ and with a chemical potential +. Then the gauge invariant
extension |~ of | to Aloc is a ground state for Aloc , with the chemical poten-
tial +.

Proof. We note that, for a # AU(1)
loc ,

lim
4 A Z

'(a*[H� 4, + , a])= lim
4 A Z

'(a*[H� 4 , a])�0 (A.6)

because the operator a commutes with the total number operator of elec-
tron. This implies that ' is a translationally invariant ground state for
AU(1)

loc . Therefore

'(h� (q)
x )=|(h� (q)

x ) (A.7)

owing to Theorem A.2. Since ' and | have the same electron density \, one
has

'(h� (q)
x &+n~ (q)

x )=|(h� (q)
x &+n~ (q)

x ) (A.8)

This implies that |~ is a translationally invariant ground state for Aloc , from
Theorem A.1. K

Proof of Theorem 2.1. By this Lemma, it is sufficient to show that,
for any given electron density \, there exists a chemical potential + such
that a ground state ' for Aloc with + has the density \.

Let 8� 4, + be a ground state of the Hamiltonian H� 4, + with a chemical
potential + such that the corresponding expectation '4, +( } } } )=
(8� 4, + , ( } } } ) 8� 4, +) is translationally invariant. Then the corresponding
infinite-volume state '+=w*&lim4 A Z '4, + is a translationally invariant
ground state with the chemical potential + for Aloc . From Theorem A.1, the
following two inequalities are valid:

'+(h� (q)
x )&'+$(h� (q)

x )�+['+(n~ (q)
x )&'+$(n~ (q)

x )] (A.9)
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and

'+$(h� (q)
x )&'+(h� (q)

x )�+$['+$(n~ (q)
x )&'+(n~ (q)

x )] (A.10)

for the infinite-volume ground states '+ and '+$ with the chemical poten-
tials + and +$, respectively. By adding both sides, one has

0�(+&+$)['+(n~ (q)
x )&'+$(n~ (q)

x )] (A.11)

This implies that the electron density \+ :='+(n~ (q)
x ) is a non-decreasing

function of the chemical potential +. As is well known, all the discon-
tinuous points of a non-decreasing function is at most countable. Assume
that +0 is such a discontinous point. Namely,

'&
+0

= lim
+ A +0

'+ , '+
+0

= lim
+ a +0

'+ (A.12)

with

\&
+0

:='&
+0

(n~ (q)
x ){'+

+0
(n~ (q)

x )=: \+
+0

(A.13)

Consider the convex combination '*
+0

:=*'&
+0

+(1&*) '+
+0

with * # [0, 1].
Clearly the state '*

+0
is a translationally invariant ground state for Aloc and

for any * # [0, 1]. Further '*
+0

has the electron density *\&
+0

+(1&*) \+
+0

.
This continuously interpolates between the two densities \&

+0
, \+

+0
. K

APPENDIX B. PROOF OF LEMMA 6.1

Consider a density function given by

\n(x, y) :=:
k

|,P
n, k(x, y)| 2 (B.1)

From the expression (3.17) of ,P
n, k , this function \n is periodic in both x

and y directions as

\n(x, y)=\n(x+2x, y)=\n(x, y+2y) (B.2)

Here 2x and 2y are given by (3.13). Owing to this periodicity, the integral
of \n on the unit cell 2l, m becomes

|
2l, m

dx dy \n(x, y)=
1
M

(B.3)
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where

2m :=[xl , xl+1]_[ ym , ym+1] (B.4)

with

xl=&
Lx

2
+(l&1) 2x for l=1, 2,..., M (B.5)

and

ym=&
Ly

2
+(m&1) 2y for m=1, 2,..., M (B.6)

Clearly we have

:
k
|

S
dx dy |U (2)(x&x$, y& y$)| |,P

n, k(x, y)|2

=|
S

dx dy |U (2)(x&x$, y& y$)| \n(x, y) (B.7)

Combining this, the periodiocity (B.2) of \n and the periodicity (2.7) of
U (2), we can assume

|x$|�
2x
2

, | y$|�
2y
2

(B.8)

for showing the statement of Lemma 6.1.
Since the function U (2) is continuous by the assumption, we have

|
2l, m

dx dy |U (2)(x&x$, y& y$)| \n(x, y)

=|U (2)(!l, m&x$, 'l, m& y$)| |
2l, m

dx dy \n(x, y)

=
1
M

|U (2)(!l, m&x$, 'l, m& y$)| (B.9)
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where (!l, m , 'l, m) is a point in the cell 2l, m , and we have used (B.3).
Thereby

|
S

dx dy |U (2)(x&x$, y& y$)| \n(x, y)

=
eB
h

:
l, m

|U (2)(!l, m&x$, 'l, m& y$)| 2x 2y

=
eB
h

:
rl, m�R

|U (2)(!l, m&x$, 'l, m& y$)| 2x 2y

+
eB
h

:
rl, m>R

|U (2)(!l, m&x$, 'l, m& y$)| 2x 2y (B.10)

where rl, m=- !2
l, m+'2

l, m . The first sum in the right-hand side of the
second equality converges to

|
x2+ y2�R2

dx dy |U (2)(x, y)| (B.11)

as Lx , Ly � +� for a fixed R because |U (2)| is uniformly continuous. The
second sum becomes small for a large R from the assumption (2.8) of U (2)

on the decay for a large distance. From these observations, we get

:
n
|

S
dx dy |U (2)(x&x$, y& y$)| \n(x, y)�C(1)(U 2))(nmax+1) (B.12)

The finite constant C(1)(U (2)) depends only on U (2). Thus the statement of
Lemma 6.1 has been proved.

APPENDIX C. PROOF OF LEMMA 6.3

In order to prove Lemma 6.3, we use the following estimate for the
integral in the left-hand side of (6.41):

Lemma C.1. Let Ly>32nmaxlB , and let n, n$�nmax . Then the
following bound is valid:

|
Lx �2

&Lx �2
dx |

Ly�2

&Ly �2
dy |,P

n$, k$(r)| |,P
n, k(r)|�=(2)(dist(m)(m, m$), nmax , Ly) (C.1)
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where k=2?m�Lx , k$=2?m$�Lx , and

=(2)(2l, nmax , Ly) :=C(4)(nmax) exp _&\?lB

Lx
2l&nmax+

2

&
+C(5)(nmax) exp _&

L2
y

32l2
B \1&

32nmaxlB

Ly +
2

& (C.2)

Here the constants C(4)(nmax) and C(5)(nmax) depend on the energy cutoff
nmax only.

The proof is given in the next Appendix D. By using the bound (C.1),
we have

:
!$

/(dist(m)(m, m$)�2l) |
S

dx dy |,P
!$(r)| |,P

! (r)|

�2(nmax+1) C(4)(nmax) :
�

l=2l

exp _&\?lB

Lx
l&nmax +

2

&
+(nmax+1)

LxLy

2?l2
B

C (5)(nmax) exp _&
L2

y

32l2
B \1&

32nmax lB

ly +
2

& (C.3)

The sum in the right-hand side is evaluated as

:
�

l=2l

exp _&\?lB

Lx
l&nmax+

2

&
�|

�

2l&1
dl exp _&\?lB

Lx
l&nmax +

2

&
�|

�

0
dl exp _&{?lB

Lx
(l+2l&1)&nmax=

2

&
�|

�

0
dl exp _&

?2l2
B

L2
x

l2& exp _&{?lB

Lx
(2l&1)&nmax=

2

&
=

1

2 - ?

Lx

lB
exp _&{?lB

Lx
(2l&1)&nmax=

2

& (C.4)

Here we have used the assumption ?(2l&1) lB �Lx>nmax of Lemma 6.3.
Substituting this into (C.3), we obtain the desired bound (6.41) with (6.32).
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APPENDIX D. PROOF OF LEMMA C.1

Throughout the present Appendix we assume Ly>32nmaxlB which is
the assumption of Lemma C.1.

Using the expression (3.17) of ,P
n, k , we evaluate the integral of the left-

hand side of (C.1) as

|
Lx �2

&Lx�2
dx |

Ly�2

&Ly �2
dy |,P

n$, k$(r)| |,P
n, k(r)|

� :
l, l$

|
Ly�2

&Ly �2
dy |vn$( y& yk$&l$Ly)| |vn( y& yk&lLy)|

� :
l, l$

|
Ly�2

&Ly �2
dy~ } vn$ \y~ +

yk& yk$

2
&l$Ly+ } } vn \y~ &

yk& yk$

2
&lLy+ }

(D.1)

where we have used the periodicity of the integrand, and have changed the
variable as

y~ = y&
yk+ yk$

2
(D.2)

for getting the second inequality. From the right-hand side of the first
inequality, we can assume | yk& yk$ |�Ly �2 without loss of generality.

Lemma D.1. Let | y|�3Ly �4. Then

:
�

l=1

|vn( y\lLy)|�C(6)(nmax) exp _&
L2

y

32l2
B \1&

32nmaxlB

Ly +
2

& (D.3)

where the constant is given by

C(6)(nmax) :=\1+
- 2?

16nmax+ max
n�nmax

[cn Nn exp[32;2
n]] (D.4)

Proof. Using the bound (6.38) for the Hermite polynomial Hn and
the assumption | y|�3Ly �4, we have
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:
�

l=1

|vn( y\lLy)|�cnNn :
�

l=1

exp[;n(l+3�4) Ly �lB] exp _&
(l&3�4)2 L2

y

2l2
B &

�cnNn :
�

l=1

exp _2;n lLy

lB & exp _&
l2L2

y

32l2
B&

=cnNn exp[32;2
n] :

�

l=1

exp _&
L2

y

32l2
B \l&

32;nlB

Ly +
2

&
(D.5)

Here we have used

l&
3
4

�
l

4
, and l+

3
4

�2l (D.6)

for getting the second inequality. The sum in the last line of (D.5) is
evaluated as

:
�

l=1

exp _&
L2

y

32l2
B \l&

32;nlB

Ly +
2

&
�exp _&

L2
y

32l2
B \1&

32;nlB

Ly +
2

&
+|

�

0
dy exp _&

L2
y

32l2
B \y+1&

32;nlB

Ly +
2

&
�exp _&

L2
y

32l2
B \1&

32;nlB

Ly +
2

&
+

1
2 �

32l2
B?

L2
y

exp _&
L2

y

32l2
B \1&

32;n lB

Ly +
2

&
=\1+2 - 2?

lB

Ly+ exp _&
L2

y

32l2
B \1&

32;nlB

Ly +
2

&
�\1+

- 2?
16nmax+ exp _&

L2
y

32l2
B \1&

32;nlB

Ly +
2

& (D.7)

by using the assumption Ly>32nmaxlB�32;nlB . K
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Using the bound (6.38) for the Hermite polynomial Hn , we have

|
+�

&�
dy |vn( y)|�cnNn |

+�

&�
dy exp _;n | y|

lB & exp _&
y2

2l2
B&

�2cnNn |
+�

0
dy exp _&

1
2l2

B

( y&;nlB)2& exp _1
2

;2
n&

�2cnNn exp _1
2

;2
n & |

+�

&�
dy exp _&

y2

2l2
B&

=2 - 2? cnNn exp _1
2

;2
n & lB (D.8)

From this inequality and Lemma D.1, we have

:
l, l$

|
Ly�2

&Ly�2
dy~ } vn$ \ y~ +

yk& yk$

2
&l$Ly + } } vn \y~ &

yk& yk$

2
&lLy+ }

�|
Ly�2

&Ly�2
dy~ }vn$ \y~ +

yk& yk$

2 + } } vn \y~ &
yk& yk$

2 + }
+:

l

:
l${0

|
Ly�2

&Ly�2
dy~ } vn$ \y~ +

yk& yk$

2
&l$Ly+ }

_} vn \y~ &
yk& yk$

2
&lLy + }

+:
l$

:
l{0

|
Ly�2

&Ly�2
dy~ } vn$ \y~ +

yk& yk$

2
&l$Ly + }

_} vn \y~ &
yk& yk$

2
&lLy + }

�|
Ly�2

&Ly�2
dy~ } vn$ \y~ +

yk& yk$

2 + } } vn \y~ &
yk& yk$

2 + }
+C(5)(nmax) exp _&

L2
y

32l2
B \1&

32nmax lB

Ly +
2

& (D.9)

where

C(5)(nmax) :=8 - 2? lB C(6)(nmax) max
n�nmax

[cnNn exp[;2
n �2]] (D.10)

376 Koma



Using the bound (6.38) for the Hermite polynomial, the rest of the integral
in (D.9) can be evaluated as

|
Ly�2

&Ly�2
dy~ |vn$( y+$y)| |vn( y&$y)|

�cncn$NnNn$ |
Ly�2

&Ly�2
dy~ exp _nmax \ | y~ +$y|

lB
+

| y~ &$y|
lB +&

_exp _&
y~ 2

l2
B

&
$y2

l2
B &

�cncn$NnNn$ exp _&
$y2

l2
B

+2nmax

|$y|
lB & |

Ly�2

&Ly�2
dy~

_exp _&
y~ 2

l2
B

+2nmax

| y~ |
lB &

�2 - ? lBcncn$NnNn$ exp[2n2
max] exp _&\ |$y|

lB
&nmax+

2

& (D.11)

for $y # R. Combining (D.1), (D.9) and (D.11), we obtain the desired
bound (C.1).

APPENDIX E. PROOF OF LEMMA 6.4

Throughout the present Appendix, we assume Ly>32nmaxlB which is
the assumption of Lemma 6.4.

Note that the right hand side of (6.73) is written as

:
!

:
!$

|
S

dx dy |U (2)(x&x$, y& y$)| |,P
! (x, y)| |,P

!$(x, y)|

= :
nmax

n=0

:
nmax

n$=0

:
2l

:
k
|

S
dx dy |U (2)(x&x$, y& y$)| |,P

! (x, y)| |,P
!$(x, y)|

�(nmax+1)2 max
n, n$ {:

2l

:
k
|

S
dx dy |U (2)(x&x$, y& y$)|

_|,P
! (x, y)| |,P

!$(x, y)|= (E.1)

where k$=k+2?2l�Lx . In order to estimate the right-hand side of the
inequality, we use the following lemma which is an extension of
Lemma 6.1:

377Spectral Gaps of Quantum Hall Systems with Interactions



Lemma E.1. Let n, n$ be indices of the Landau levels, and let 2l be
a positive integer. Then

:
k
|

S
dx dy |U (2)(x&x$, y& y$)| |,P

n, k(r)| |,P
n$, k$(r)|

�=(2)(2l, nmax , Lx , Ly) C(10)(U (2)) (E.2)

for x$, y$ # R, where k$=k+2?2l�Lx , =(2)(2l, nmax , Lx , Ly) is given by
(C.2), and C(10)(U (2)) is a positive constant which depends on the potential
U (2) only.

Proof. Consider a density function

\n, n$(r; 2l)=:
k

|,P
n, k(r)| |,P

n$, k$(r)| (E.3)

Then we have

:
k
|

S
dx dy |U (2)(x&x$, y& y$)| |,P

n, k(r)| |,P
n$, k$(r)|

=|
S

dx dy |U (2)(x&x$, y& y$)|\n, n$(x, y; 2l) (E.4)

From the expression (3.17) of 8P
n, k , one can notice that this density func-

tion is periodic in both x and y directions as

\n, n$(x+2x, y; 2l)=\n, n$(x, y+2y; 2l)=\n, n$(x, y; 2l) (E.5)

Owing to this property and the periodocity (2.7) of U (2), we can assume

|x$|� 1
22x, | y$|� 1

2 2y (E.6)

for evaluating (E.4). Further we have

|
S

dx dy \n, n$(x, y; 2l)=M2 |
2l, m

dx dy \n, n$(x, y; 2l)

�M max
k |

S
dx dy |,P

n, k(r)| |,P
n$, k$(r)| (E.7)

where 2l, m are the unit cells given by

2l, m :=[xl , xl+1]_[ ym , ym+1] (E.8)
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with

xl=&
Lx

2
+(l&1) 2x for l=1, 2,..., M (E.9)

ym=&
Ly

2
+(m&1) 2y for m=1, 2,..., M (E.10)

Since the right-hand side of the inequality in (E.7) is evaluated by using
Lemma C.1, we get

|
2l, m

dx dy \n, n$(x, y; 2l)�
1
M

=(2)(2l, nmax , Lx , Ly) (E.11)

From this inequality and the assumption that U (2) is continuous, we have

|
2l, m

dx dy |U (2)(x&x$, y& y$)| \n, n$(x, y; 2l)

=|U (2)(!l, m&x$, 'l, m& y$)| |
2l, m

dx dy \n, n$(x, y; 2l)

�|U (2)(!l, m&x$, 'l, m& y$)|
1
M

=(2)(2l, nmax , Lx , Ly) (E.12)

where (!l, m , 'l, m) # 2l, m . Summing over all l, m, we obtain

|
S

dx dy |U (2)(x&x$, y& y$)| \n, n$(x, y; 2l)

�
eB
h

=(2)(2l, nmax , Lx , Ly) :
l, m

|U (2)(!l, m&x$, 'l, m& y$)| 2x 2y
(E.13)

We write

:
l, m

|U (2)(!l, m&x$, 'l, m& y$)| 2x 2y

= :
l, m; rl, m�R

|U (2)(!l, m&x$, 'l, m& y$)| 2x 2y

+ :
l, m; rl, m>R

|U (2)(!l, m&x$, 'l, m& y$)| 2x 2y (E.14)
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with rl, m=- !2
l, m+'2

l, m and for a large positive number R. The first sum
in the right-hand side is coverges to

|
x2+ y2�R2

dx dy |U (2)(x, y)| (E.15)

as Lx , Ly � +� for a fixed large R because |U (2)| is uniformly continuous
from the assumtion on U (2). The second sum in the right-hand side of
(E.14) becomes small for a large R from the assumtion (2.8) of U (2) about
the decay for a large distance. Combining these observations with (E.4)
and (E.13), we obtain the desired bound (E.2). K

From (E.1), (E.2) and (C.2), we have

:
!

:
!$

|
S

dx dy |U (2)(x&x$, y& y$)| |,P
! (x, y)| |,P

!$(x, y)|

�(nmax+1)2 C(10)(U (2)) {C(4)(nmax) :
+�

2l=&�

exp _&\?lB

Lx
2l&nmax+

2

&
+C(5)(nmax)

LxLy

2?l2
B

exp _&
L2

y

32l2
B \1&

32nmax lB

Ly +
2

&= (E.16)

Since the sum in the right-hand side can be easily evaluated as

:
+�

2l=&�

exp _&\?lB

Lx
2l&nmax+

2

&�C(11)(nmax)+
Lx

lB
C(12)(nmax) (E.17)

we obtain the bound (6.73) with (6.64). Here the constants C(11)(nmax) and
C(12)(nmax) depend on the energy cutoff nmax only.
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